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新廣義偏斜 t 分佈: 性質與應用
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摘 要

我們將介紹並探討一新的厚尾分佈族, 其包含 Azzalini and Capitanio [Distributions

generated by perturbation of symmetry with emphasis on a multivariate skew t-

distribution, 2003, J. Roy. Soc. Ser. B 65, 367-389 ] 所建構的偏斜 t 分佈。 我們將導出

此新分佈之機率密度函數 、累積分佈函數及各階動差的封閉式。 這些封閉式有助於相關機率 、

偏態 、峰態等數值的計算。 最後, 我們會以模擬數據及一個實例說明此分佈之實用性。
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1. 簡介

常態分佈雖然在統計上擁有很多良好的性質, 但卻不適合拿來配適厚尾資料或非對稱資料。

一直以來都有不少學者投入偏斜分佈的建構和探討。 其中, 最為多人使用的是 Azzalini (1985)

所介紹的偏斜常態分佈 (skew normal distribution), 簡記為 SN(λ), 其機率密度函數 (prob-

ability density function, p.d.f.) 為

2φ(x)Φ(λx), x ∈ R, (1)

其中 λ ∈ R, φ(·) 和 Φ(·) 分別代表標準常態分佈N(0, 1) 的 p.d.f. 和累積分佈函數 (cumula-

tive distribution function, c.d.f.)。 從 (1) 式中可以看到,當 λ = 0 時, SN(λ) 即為 N(0, 1),

而且當 λ 愈大時, SN(λ) 會愈接近半常態分佈 HN(0, 1) (half-normal distribution)。 由於

λ 控制著該分佈的形狀, 因此 λ 被稱為 SN 分佈的形狀參數 (shape parameter)。

緊接著, Henze (1986) 給出更多的 SN(λ) 性質, 其中有: 在 U 和 V 皆服從 N(0, 1), 且

其相互獨立的條件下, 令

Z =
λ√

1 + λ2
|U |+ 1√

1 + λ2
V,

則 Z 服從 SN(λ)。 這個結果對 SN 隨機亂數的產生提供了方便的管道。 SN 分佈不僅能夠補

獲偏斜性,而且還具有一些與N(0, 1)相同或相似的分佈性質, 因此相當有助於穩健性 (robust-

ness)的研究。 有關 SN 分佈的分佈性質和統計應用, 可見於 Azzalini (1986), Gupta and Br

-own (2001), Gupta and Chen (2001, 2003), Gupta et al. (2002), Lin et al. (2007), Tsai

(2007), Tsai and Chiang (2008), Li et al. (2014), Razzaghi (2014), Su et al. (2014) 和

Su and Gupta (2015) 等等; 其相關領域之回顧與綜述, 可參考 Genton (2004), Azzalini

(2005) 和 Arellano-Valle and Azzalini (2006)。

從近年的文獻中可看出, 因為對偏斜資料的建模需求大增, 有關偏斜分佈的研究更顯得重

要。 不少學者利用 SN 分佈的建構概念,提出更具彈性的偏斜分佈, 其中較大的分佈族有Wang

et al. (2004)的偏斜對稱分佈、Genton and Loperfido (2005)的廣義偏斜橢圓分佈、Arellano

-Valle et al. (2006)的挑選分佈等等。 這些分佈同時包含了以 N(0, 1)分佈為核心的偏斜分佈,

和以 t 分佈 (Student’s t distribution) 為核心的偏斜分佈。 t 分佈在統計推論上的重要是眾

所周知的, 是處理厚尾資料的典型選擇。 理所當然, 對於厚尾且偏斜資料的配適狀況, 偏斜 t 分

佈成了一個值得探討的議題。
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令 Y 服從 N(0, 1) 分佈, K 服從 χ2
r 分佈 (chi-square distribution with degrees

of freedom r), 並假設 Y 與 K 獨立, 我們知道 Y/
√

K/r 服從自由度為 r 之 t 分佈。

Azzalini and Capitanio (2003)仿照 t分佈的建構方式, 定義 Uλ/
√

K/r為一偏斜 t分佈, 其

中 Uλ 服從 SN(λ) 分佈且假設 Uλ 與 K 獨立, 並將此分佈簡記為 St1(r, λ)。 此分佈不僅保有

厚尾的性質,而且擁有許多與 t分佈相同或類似的性質,甚至可以有系統性的捕捉偏斜性。偏斜

t 分佈的性質研究和其推廣, 可見 Jamalizadeh et al. (2009) 和 Huang et al. (2019)。 不同

版本的偏斜 t 分佈之探討, 可見 Azzalini and Capitanio (2003), Gupta (2003), Jones and

Faddy (2003), Sahu et al. (2003), Ma and Genton (2004), Genton and Loperfido (2005)

, Kim (2008), Arslan and Genc (2009) 和其相關文獻等。

在第二節當中, 我們會以兩獨立隨機變數相除的形式定義偏斜 t 分佈的推廣分佈, 並給出

其 p.d.f. 、動差函數 (moments) 、累積分佈函數之遞迴式等性質。 在第三節當中, 我們將以模擬

資料來說明此廣義偏斜 t 分佈富有彈性 (flexiability)。 在第四節中, 我們會以實際資料來進行

模型的配適。 最後在第五節中給出一些結論。

2. 偏斜 t 分佈及其性質

Azzalini and Capitanio (2003) 利用

X1 = Uλ/
√

K/r, (2)

來推廣自由度為 r 的 t 分佈, 其中隨機變數 Uλ 服從 SN(λ) 分佈, 隨機變數 K 服從 χ2
r 分

佈, 而且 Uλ 與 K 相互獨立。 他們給出 X1 的 p.d.f. 具有下列形式

fX1 (x; r, λ) = 2fTr (x)FTr+1

(

λx
√
r + 1√

r + x2

)

, x ∈ R, (3)

其中 fTr(·) 與 FTr(·) 分別代表自由度為 r 的 t 分佈之 p.d.f. 與 c.d.f.。 經由變數變換, 我們

可導出
√

K/r 的 p.d.f. 之形式為

2ψ(υ; r)IR+(υ), υ ∈ R, (4)

其中

ψ(υ; r) ≡ 1

(2/r)r/2 Γ (r/2)
|υ|r−1e−

1
2
rυ2
, υ ∈ R,
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為一對稱的 p.d.f., 且

IR+(υ) =

{

1, υ ≥ 0

0, υ < 0.

最近,為了可以更健全地配適資料的偏斜性和厚尾性, Huang et al. (2019) 將 (2)式中的
√

K/r

取代為 Wδ, 其中 Wδ 的 p.d.f. 為

2ψ(υ; r)Φ(δυ), υ, δ ∈ R, (5)

並利用

X2 = Uλ/Wδ

來建構更廣義的偏斜 t 分配, 簡記為 St2(r, λ, δ)。 從 (4) 式和 (5) 式中不難看出 Wδ
d−→

δ→∞
√

K/r, 因此 St2(r, λ, δ)
d−→

δ→∞
St1(r, λ), 其中 “

d−→” 表分佈收斂 (converge in distribu-

tion)。 他們亦指出當 λ = 0 且 δ = 0 時, St2 分佈即為 t 分佈, 且當 δ ≥ 0 時, St2 分佈才具

有鑑別性 (identifiability)。

令 W0 ≡Wδ|δ=0。 我們可看出當 r = 1 且 δ = 0 時, W0 服從 N(0, 1) 分佈, 因此

√
K

d
= |W0| d

= (W0|W0 > 0) ∼ HN(0, 1),

其中 “
d
=” 表分佈相同 (identical distributed)。 然而, 當 r = 1 且 δ 6= 0 時, Wδ 服從 SN(δ)

分佈, 此時我們只能得到
√
K

d
= |Wδ| ∼ HN(0, 1),

然而 (Wδ|Wδ > 0) 並非服從 HN(0, 1) 分佈。 甚至對任意 r 和 δ,

√

K/r
d
= |Wδ|,

恆成立, 但卻只有在 δ = 0 時,

√

K/r
d
= |W0| d

= (W0|W0 > 0),

才會成立。 基於此, 本研究擬將 (2) 式中的
√

K/r 取代為 (Wδ|Wδ > 0) , 並定義新的廣義 t

分佈如下:
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定義 2.1. 令 Uλ 與 Vδ 為二獨立之隨機變數, 其中 Uλ 服從 SN(λ) 分佈, Vδ ≡ (Wδ|Wδ > 0),

其中 Wδ 之 p.d.f. 為 2ψ(υ; r)Φ(δυ), υ ∈ R, δ ∈ R。 定義

X3 = Uλ/Vδ,

其分佈稱為一廣義偏斜 t 分佈, 並簡記為 St3(r, λ, δ)。

為了給出 St3(r, λ, δ) 分佈的 p.d.f., 我們將用到 Huang et al. (2019) 中之引理 1, 如下。

引理 2.1. 對任何實數 q > −1 和 h,

∫ ∞

0
vqφ(v)Φ(hv)dv =

2q/2−1Γ((q + 1)/2)√
π

FTq+1(h
√

q + 1).

利用引理 2.1, 我們可以給出定義 2.1 中的 Vδ 之 p.d.f. 如下。

引理 2.2. 令 Vδ 為定義 2.1 中之隨機變數, 其 p.d.f. 為

2

FTr(δ)
ψ(υ; r)Φ(δυ), υ ≥ 0.

[證明]: 利用 Vδ ≡ (Wδ|Wδ > 0), 我們可先得到

P (Wδ > 0)

=

∫ ∞

0

2

(2/r)r/2Γ(r/2)
υr−1e−

1
2
rυ2

Φ(δυ)dυ

=
2
√
2π

(2/r)r/2Γ(r/2)

∫ ∞

0

1√
2π

(

x√
r

)r−1

e−
1
2
x2
Φ

(

δ√
r
x

)

1√
r
dx

= FTr(δ).

再利用 fVδ
(υ) = fWδ

(υ)/P (Wδ > 0), υ ≥ 0, 便立即得證。

�

接著, 我們便可以導出 St3 分佈的 p.d.f. 如下。
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定理 2.1. 對任意 r > 0, λ ∈ R, δ ∈ R, St3(r, λ, δ) 分佈的 p.d.f. 為

fX3(x; r, λ, δ) =

√
π

FTr (δ)

22−r/2

Γ((r + 1)/2)
fTr(x) (6)

×
∫

∞

0
υrφ(υ)Φ

(

λxυ√
r + x2

)

Φ

(

δυ√
r + x2

)

dυ, x ∈ R.

[證明]: 根據定義 2.1 和引理 2.2, 令X3 = Uλ/Vδ 服從 St3(r, λ, δ) 分佈, 其中 Uλ 與 Vδ 的

p.d.f. 分別為

fUλ
(u) = 2φ(u)Φ(λu), u ∈ R,

以及

fVδ
(υ) =

2

FTr(δ)
υr−1e−

1
2
rυ2

Φ(δυ), υ > 0.

接著, 推導 St3 分佈的 p.d.f. 如下:

fX3 (x) =

∫ ∞

0

4

FTr(δ)
ψ(υ; r)φ(xυ)Φ(λxυ)Φ(δυ)dυ

=
4

FTr (δ)

1

(2/r)r/2Γ(r/2)

∫

∞

0

1√
2π
υre−(r+x2)υ2/2Φ(λxυ)Φ(δυ)dυ

=

√
π

FTr (δ)

22−r/2

Γ ((r + 1) /2)
f
Tr

(x)

×
∫ ∞

0
υrφ(v)Φ

(

λxυ√
r + x2

)

Φ

(

δυ√
r + x2

)

dυ,

其中第三個等式是利用 u2 = (r + x2)υ2 的變數轉換得到的, 得證。

�

註記 2.1. Huang et al. (2019) 中定義對任意實數 q > −1, 且 h 、k 亦為實數而言,

Ψ(q, h, k) ≡
∫ ∞

0
υrφ(v)Φ(hυ)Φ(kυ)dυ

並給出其遞迴表達式如下:
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(i) 若 q 為奇數時,

Ψ(q, h, k) =
2q/2

4π
Γ

(

q + 1

2

) (q+1)/2
∑

i=1

Γ(i− 1/2)

Γ(i)

(

h

(1 + h2)i−1/2
FT2i−1

(

k
√
2i− 1√
1 + h2

)

+
k

(1 + k2)i−1/2
FT2i−1

(

h
√
2i− 1√
1 + k2

))

+
2q/2−3

√
π

Γ
(q + 1

2

)

. (7)

(ii) 若 q 為偶數時,

Ψ(q, h, k) =
2q/2

4π
Γ
(q + 1

2

)

q/2
∑

i=1

Γ(i)

Γ(i+ 1/2)

(

h

(1 + h2)i
FT2i

(

k
√
2i√

1 + h2

)

(8)

+
k

(1 + k2)i
FT2i

(

h
√
2i√

1 + k2

))

+
2q/2√
π
Γ

(

q + 1

2

)(

1

8
+

1

4π

(

arctanh+ arctan k + arctan
hk√

1 + h2 + k2

))

.

利用註記 2.1, 可立即得到下列具有簡明 p.d.f. 的 St3(r, λ, δ) 分佈的例子。

推論 2.1. 令 X3 服從 St3(r, λ, δ) 分佈, 其 p.d.f. 為 fX3(x), x ∈ R。

(i) 當 λ = 0 時,

fX3(x) =
1

FTr(δ)
fTr(x)FTr+1

(

δ
√
r + 1√
r + x2

)

, x ∈ R. (9)

(ii) 當 δ = 0 時, St3 分佈即為 St1(r, λ) 分佈, 其 p.d.f. 為

fX3 (x) = 2fTr (x)FTr+1

(

λx
√
r + 1√

r + x2

)

, x ∈ R. (10)

(iii) 當 λ = 0 且 δ = 0 時, fX3(x) = fTr(x), x ∈ R.

(iv) 當 r = 1 時, St3 分佈即為一種新推廣的標準偏斜柯西分佈 (standard skew Cauchy

distribution), 其 p.d.f. 為

fX3(x) =
1

FT1(δ)
fT1(x)

(

λx√
1 + x2 + λ2x2

FT1

(

δ√
1 + x2 + λ2x2

)

+
δ√

1 + x2 + δ2
FT1

(

λx√
1 + x2 + δ2

)

+
1

2

)

, x ∈ R. (11)
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(v) −X3 服從 St3(r,−λ, δ) 分佈。

[證明]: (i) 當 λ = 0 時, 我們可得

fX3 (x) =

√
π

2FTr(δ)

22−r/2

Γ((r + 1)/2)
fTr(x)

∫ ∞

0
υrφ(υ)Φ

(

δυ√
r + x2

)

dυ,

接著再利用引理 2.1 便可得 (9) 式。

(ii) 當 δ = 0 時, 我們可得

fX3 (x) =
22−r/2√π

Γ((r + 1)/2)
fTr(x)

∫ ∞

0
υrφ(υ)Φ

(

λxυ√
r + x2

)

dυ,

同樣再利用引理 2.1 即可得 (10) 式。

(iii) 利用 (9) 式 或 (10) 式, 便可得證。

(iv) 當 r = 1 時, 我們可得

fX3 (x) =

√
8π

FT1(δ)
fT1(x)

∫ ∞

0
υφ(υ)Φ

(

λxυ√
1 + x2

)

Φ

(

δυ√
1 + x2

)

dυ,

再利用 (7) 式, 便可得 (11) 式。

(v) 利用 f−X(x) = fX(−x) 便可立即得證。

�

接著, 我們來看 St3(r, λ, δ) 分佈的一些極限結果。

定理 2.2. 令 X3 服從 St3(r, λ, δ) 分佈, 其 p.d.f. 為 fX3(x), x ∈ R.

(i) 當 r → ∞ 時, St3(r, λ, δ)
d−→ SN(λ).

(ii) 當 λ→ ∞ 時,

fX3(x) →
2

FTr (δ)
fTr(x)FTr+1

(

δ
√
r + 1√
r + x2

)

, x ≥ 0. (12)

(iii) 當 δ → ∞ 時, St3(r, λ, δ)
d−→ St1(r, λ).
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[證明]: 如定義 2.1 中, 令 X3
d
= Uλ/Vδ , 其中 Uλ 和 Vδ

d
= (Wδ|Wδ > 0)。

(i) 很明顯地, Wδ
2 d
= K/r, 其中 K 服從 χ2

r 分佈。 所以若 r → ∞ 時, Wδ
2 → 1; 因此

當 r → ∞ 時, Wδ 會分佈收斂至一隨機變數 Y , 其中 P (Y = 1) = lim
r→∞

P (Wδ >

0) = p 和 P (Y = −1) = 1 − p。 接著再利用 Vδ 的定義, 可得 Vδ
d−→

δ→∞
1, 最後導致

St3(r, λ, δ)
d−→

δ→∞
SN(λ)。

(ii) 當 λ→ ∞ 且 x ≥ 0 時, 我們可得到

fX3 (x) →
√
π

FTr(δ)

22−r/2

Γ((r + 1)/2)
fTr(x)

∫ ∞

0
υrφ(υ)Φ

(

δυ√
r + x2

)

dυ.

再利用引理 2.1 , 便可得 (12) 式。

(iii) 當 δ → ∞ 時, Vδ
d−→
√

K/r, 因此 X3
d−→ St1(r, λ)。

�

圖 1 呈現一些 St3(r, λ, δ) 分佈, 可大致上看出當 δ < 0 時, St3(r, λ, δ) 的形式有大幅

的不同。 此外, 也可看出一些 St3 分佈的極限行為, 包括當 r → ∞ 、 λ → ∞ 、 λ → −∞ 及

δ → ∞ 時的極限分佈。

接下來我們給出 St3(r, λ, δ) 分佈的各階動差的封閉式。

定理 2.3. 令 X3 服從 St3(r, λ, δ) 分佈。 若 n 為奇數, 則

E (Xn
3 ) =

FTr−n(δ
√

1− n/r)

FTr(δ)

rn/2Γ((n+ 1) /2)Γ((r − n) /2)√
πΓ(r/2)

(13)

× (2FTn+1(λ
√
n+ 1)− 1);

若 n 為偶數, 則

E (Xn
3 ) =

FTr−n(δ
√

1− n/r)

FTr (δ)

rn/2Γ((n+ 1) /2)Γ((r − n) /2)√
πΓ(r/2)

. (14)
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圖 1: 不同 St3(r, λ, δ) 分佈之 p.d.f., 其中實線表 r = 15 、長虛線表 r = 5 、長短虛線表 r = 1。
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[證明]: 令 X3 = Uλ/Vδ, 其中 Uλ 和 Vδ 如定義 2.1 中所定義的隨機變數。 首先對任一正整數

n, 我們可以得到

E(Un
λ )

=

∫ ∞

−∞

2unφ(u)Φ(λu)du

=

∫ ∞

0
2unφ(u)Φ(λu)du +

∫ 0

−∞

2unφ(u)Φ(λu)du

=

∫ ∞

0
2(−υ)nφ(υ)(1 − Φ(λυ))dυ +

∫ ∞

0
2unφ(u)Φ(λu)du

=

∫ ∞

0
2unφ(u)Φ(λu)du +

∫ ∞

0
2(−υ)nφ(υ)dυ −

∫ ∞

0
2(−υ)nφ(υ)Φ(λυ)dυ

= (1− (−1)n)

∫ ∞

0
2unφ(u)Φ(λu)du + (−1)n

∫ ∞

0
2υnφ(υ)dυ

= 2
(

(1− (−1)n)FTn+1(λ
√
n+ 1) + (−1)n

)2n/2−1Γ((n+ 1)/2)√
π

, (15)

其中最後一個等式來自引理 2.2 的應用。 相同地, 對任一正整數 n 我們亦可得到

E(V −n
δ )

=

∫ ∞

0

1

vn
2

FTr(δ)

1

2r/2Γ(r/2)
vr−1e−

1
2
rv2Φ(δv)dv

=
2

FTr(δ)

√
2π

2r/2Γ(r/2)

∫ ∞

0

1√
r

( υ√
r

)r−n−1 1√
2π
e−

υ2

2 Φ
( δ√

r
υ
)

dυ

=
2

FTr(δ)

√
2π

2r/2Γ(r/2)

( 1√
r

)r−n
∫ ∞

0
υr−nφ(υ)Φ

( δ√
r
υ
)

dυ

=
FTr−n(δ

√

1− n/r)

FTr(δ)

Γ((r − n) /2)

Γ(r/2)
rn/22−n/2. (16)

最後, 由於 Uλ 與 Vδ 獨立, 因此 E(Xn
3 ) = E(Un

λ )E(V −n
δ ) , 所以搭配 (15) 式和 (16) 式, 便

可立即得到 (13) 和 (14), 得證。

�

從定理 2.3 中, 可看出當 δ = 0 時, E(Xn
3 ) = E(Xn

1 ), 且當 δ → ∞ 時, E(Xn
3 ) →

E(Xn
1 ), 其中 X1 具有 St1(r, λ) 分佈。 這分別呼應了 St3(r, λ, 0) = St1(r, λ) 且 St3(r, λ, δ)

d−→
δ→∞

St1(r, λ)。
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根據定理 2.3, 我們可給出 St3(r, λ, δ) 前四階動差, 藉此亦可得 St3(r, λ, δ) 分佈的期望

值 、變異數 、偏態係數 (skewness) 以及峰態係數 (kurtosis)。

推論 2.2. 令 X3 服從 St3(r, λ, δ) 分佈, 則

E(X3) =
FTr−1(δ

√

1− 1/r)

FTr(δ)

√
rΓ((r − 1) /2)√
πΓ(r/2)

(2FT2(
√
2λ)− 1),

E(X2
3 ) =

FTr−2(δ
√

1− 2/r)

FTr(δ)

r

r − 2
,

E
(

X3
3

)

=
FTr−3(δ

√

1− 3/r)

FTr(δ)

r3/2Γ((r − 3) /2)√
πΓ(r/2)

(2FT4(2λ)− 1),

E
(

X4
3

)

=
FTr−4(δ

√

1− 4/r)

FTr(δ)

3r2

(r − 4)(r − 2)
.

接下來根據推論 2.2, 我們將 λ 的範圍限制在 (−100, 100) 之間, 並變動 r 和 δ 的值, 來

得到各種偏態係數及峰態係數。 表 1 和表 2 呈現了 St3 分佈可能的偏態係數及峰態係數之範

圍。 從表 2 我們可以看到自由度小的時候, St3 分佈在 δ < −2 時有較明顯的厚尾現象。

另一方面, 對於 r > 2, Jamalizadeh et al. (2009) 導出 St1(r, λ) 分佈之 c.d.f. 有一遞

迴式。 相同地, 我們亦可給出 St3(r, λ, δ) 分佈的 c.d.f. 之遞迴式。

定理 2.4. St3(r, λ, δ) 分佈的 c.d.f. 有一遞迴式如下:

FX3(x; r, λ, δ)

=
FTr−2(δ

√

1− 2/r)

FTr(δ)
FX3

(

x

√

1− 2

r
; r − 2, λ, δ

√

1− 2

r

)

+
FTr−1(δ)

FTr(δ)

δ
√

r(r − 2)
fTr−2

(

δ

√

1− 2

r

)

FX1

(

x

√

r − 1

r + δ2
; r − 1, λ

)

+
FTr−2(δ

√

1− 2/r)

FTr(δ)

x
√

r(r − 2)
fX3

(

x

√

1− 2

r
; r − 2, λ, δ

√

1− 2

r

)

, (17)

其中 r > 2。
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表 1: 一些可能的偏態係數及峰態係數範圍, 當 δ > 0。

r δ 偏態係數 峰態係數 r δ 偏態係數 峰態係數

5 1 (−2.43, 2.43) (8.25, 20.73) 15 1 (−1.27, 1.27) (3.53, 5.20)

5 2 (−2.37, 2.37) (7.89, 19.43) 15 2 (−1.26, 1.26) (3.53, 5.19)

5 3 (−2.37, 2.37) (7.84, 19.06) 15 3 (−1.27, 1.27) (3.54, 5.21)

5 4 (−2.40, 2.40) (7.92, 19.15) 15 4 (−1.27, 1.27) (3.54, 5.23)

5 5 (−2.42, 2.42) (8.02, 19.40) 15 5 (−1.27, 1.27) (3.54, 5.23)

5 10 (−2.49, 2.49) (8.41, 20.62) 15 10 (−1.27, 1.27) (3.55, 5.24)

5 ∞ (−2.55, 2.55) (9.00, 23.10) 15 ∞ (−1.27, 1.27) (3.55, 5.24)

10 1 (−1.45, 1.45) (3.96, 6.37) 30 1 (−1.12, 1.12) (3.23, 4.42)

10 2 (−1.44, 1.44) (3.95, 6.34) 30 2 (−1.12, 1.12) (3.23, 4.42)

10 3 (−1.45, 1.45) (3.97, 6.37) 30 3 (−1.12, 1.12) (3.23, 4.43)

10 4 (−1.46, 1.46) (3.98, 6.42) 30 4 (−1.12, 1.12) (3.23, 4.43)

10 5 (−1.46, 1.46) (3.99, 6.45) 30 5 (−1.12, 1.12) (3.23, 4.43)

10 10 (−1.46, 1.46) (4.00, 6.48) 30 10 (−1.12, 1.12) (3.23, 4.43)

10 ∞ (−1.46, 1.46) (4.00, 6.48) 30 ∞ (−1.12, 1.12) (3.23, 4.43)

表 2: 一些可能的偏態係數及峰態係數範圍, 當 δ < 0。

r δ 偏態係數 峰態係數 r δ 偏態係數 峰態係數

5 −1 (−2.66, 2.66) (9.77, 25.43) 15 −1 (−1.28, 1.28) (3.56, 5.27)

5 −2 (−2.72, 2.72) (10.23, 26.83) 15 −2 (−1.28, 1.28) (3.57, 5.30)

5 −3 (−2.76, 2.76) (10.47, 27.54) 15 −3 (−1.29, 1.29) (3.58, 5.31)

5 −4 (−2.78, 2.78) (10.59, 27.91) 15 −4 (−1.29, 1.29) (3.58, 5.32)

5 −5 (−2.78, 2.78) (10.66, 28.11) 15 −5 (−1.29, 1.29) (3.58, 5.33)

5 −10 (−2.80, 2.80) (10.76, 28.43) 15 −10 (−1.29, 1.29) (3.58, 5.34)

5 −∞ (−2.80, 2.80) (10.80, 28.55) 15 −∞ (−1.29, 1.29) (3.58, 5.34)

10 −1 (−1.48, 1.48) (4.04, 6.60) 30 −1 (−1.12, 1.12) (3.23, 4.44)

10 −2 (−1.49, 1.49) (4.07, 6.68) 30 −2 (−1.12, 1.12) (3.24, 4.44)

10 −3 (−1.50, 1.50) (4.09, 6.72) 30 −3 (−1.12, 1.12) (3.24, 4.44)

10 −4 (−1.50, 1.50) (4.10, 6.75) 30 −4 (−1.12, 1.12) (3.24, 4.44)

10 −5 (−1.50, 1.50) (4.10, 6.76) 30 −5 (−1.12, 1.12) (3.24, 4.45)

10 −10 (−1.51, 1.51) (4.11, 6.78) 30 −10 (−1.12, 1.12) (3.24, 4.45)

10 −∞ (−1.51, 1.50) (4.11, 6.79) 30 −∞ (−1.12, 1.12) (3.23, 4.45)
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[證明]: 令 X3 = Uλ/Vδ , 其中 Uλ 和 Vδ 如定義 2.1 中所定義的隨機變數。 首先, 我們知道

FX3(x; r, λ, δ)

=

∫ ∞

0
P (Uλ < xυ)fVδ

(υ)dυ

=
2

FTr(δ)

1

(2/r)r/2Γ (r/2)

∫ ∞

0
P (Uλ < xυ)υr−1e−

1
2
rυ2

Φ(δυ)dυ

=
2

FTr(δ)

√
2π

(2)r/2Γ (r/2)

∫ ∞

0
υr−1φ(υ)Φ

(

δ√
r
υ

)

Φ

(

x√
r
υ;λ

)

dυ, (18)

其中 Φ(xυ;λ) = P (Uλ ≤ xυ)。 利用分部積分法 (integration by parts), 可以導出

∫

∞

0
υr−1φ(υ)Φ

(

δ√
r
υ

)

Φ

(

x√
r
υ;λ

)

dυ (19)

=
2Γ (r/2)

Γ (r/2− 1)

∫ ∞

0
υr−3φ (v) Φ

(

δ√
r
υ

)

Φ

(

x√
r
υ;λ

)

dυ

+
δ

√
2πr (1 + δ2/r)(r−1)/2

∫ ∞

0
υr−2φ (υ) Φ

(

x√
r + δ2

υ;λ

)

dυ

+
2x

√
2πr (1 + x2/r)

(r−1)/2

∫ ∞

0
υr−2φ (v) Φ

(

λx√
r + x2

υ

)

Φ

(

δ√
r + x2

υ

)

dυ.

對於 r > 2 而言, (19) 式等號右邊的第一部分與 (18) 式相似, 因此經過一些運算之後, 我們

可以得到第一部分為

2Γ (r/2)

Γ (r/2− 1)

∫ ∞

0
υr−3φ (v) Φ

(

δ√
r
υ

)

Φ

(

x√
r
υ;λ

)

dυ

=
FTr−2(δ

√

1− 2
r )

FTr(δ)
FX3

(

x

√

1− 2

r
; r − 2, λ, δ

√

1− 2

r

)

; (20)

再次利用 (18) 式, (19) 式等號右邊的第二部分可以寫成

δ
√
2πr (1 + δ2/r)(r−1)/2

∫

∞

0
υr−2φ (υ) Φ

(

x√
r + δ2

υ;λ

)

dυ

=
FTr−1(δ)

FTr(δ)

δ
√

r(r − 2)
fTr−2

(

δ

√

1− 2

r

)

FX1

(

x

√

r − 1

r + δ2
; r − 1, λ

)

; (21)
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又 (19) 式等號右邊的第三部分與 (6) 式的型式相似, 因此經過運算之後我們可以將第三部分

寫成

2x
√
2πr (1 + x2/r)

(r−1)/2

∫ ∞

0
υr−2φ (v) Φ

(

λx√
r + x2

υ

)

Φ

(

δ√
r + x2

υ

)

dυ

=
FTr−2(δ

√

1− 2/r)

FTr(δ)

x
√

r(r − 2)
fX3

(

x

√

1− 2

r
; r − 2, λ, δ

√

1− 2

r

)

. (22)

最後利用 (18) 式至 (22) 式便可得證。

�

註記 2.2. 根據定理 2.2,我們知道當 δ → ∞時, St3(r, λ, δ)
d−→St1(r, λ), 因此 FX3(x; r, λ, δ)

−→
δ→∞

FX1(x; r, λ)。 然而當 δ = 0時, St3(r, λ, δ) = St1(r, λ),所以亦可看出 FX3(x; r, λ, δ) =

FX1(x; r, λ)。 其中 FX1(x; r, λ) 如 Jamalizadeh et al. (2009) 所示:

FX1(x; r, λ) = FX1

(

x

√

1− 2

r
; r − 2, λ

)

+
Γ ((r − 1) /2) rr/2−1

√
πΓ (r/2)

x

(r + x2)(r−1)/2
FTr−1

(

λx

√

r − 1

r + x2

)

.

此外他們亦給出當 r = 1 以及 r = 2 之封閉型式,

FX1(x; 1, λ) =
1

π

(

arctan x+ arccos

(

λ
√

(1 + λ2) (1 + x2)

))

, x ∈ R,

FX1 (x; 2, λ) =
1

2
− 1

π
arctan λ

+
x√

2 + x2

(

1

2
+

1

π
arctan

(

λx√
2 + x2

))

, x ∈ R.



60 YOU-JIUN LIN AND NAN-CHENG SU

註記 2.3. 利用註記 2.1, 我們亦可得到當 r = 1 和 r = 2 時, X3 之 p.d.f. 的封閉式分別為

fX3(x; 1, λ, δ) =

√
2π

π + 2arctan δ

1

1 + x2

×
(

√

2

π

(

λx√
1 + x2 + λ2x2

(

1

2
+

1

π
arctan

δ√
1 + x2 + λ2x2

)

+
δ√

1 + x2 + δ2

(

1

2
+

1

π
arctan

λx√
1 + x2 + δ2

))

+
1√
2π

)

及

fX3(x; 2, λ, δ) =

√
16 + 8δ2√
2 + δ2 + δ

1

(1 + (x2/2))3/2

×
(

1

2π

(

λx
√
2 + x2

2 + x2 + λ2x2

(

1

2
+

δ

2
√
2 + x2 + λ2x2 + δ2

)

+
δ
√
2 + x2

2 + x2 + δ2

(

1

2
+

λx

2
√
2 + x2 + λ2x2 + δ2

))

+

(

1

8
+

1

4π

(

arctan
λx√
2 + x2

+ arctan
δ√

2 + x2

+ arctan
δλx√

2 + x2
√
2 + x2 + λ2x2 + δ2

)))

.

3. St3(r, λ, δ) 分佈之柔軟度

如第 2 章中所提, St3 分佈和 St2 分佈都比 St1 分佈更具有彈性, 他們共同交集的分佈是

St1。 St2 的分佈性質可見於 Huang et al. (2019), 然而我們發現 St2 分佈不具鑑別性, 即會

有不同參數但分佈卻相同的情況。 這一節中, 我們只會呈現 St3 分佈的柔軟度, 試圖說明 St3

分佈比 St1 多一個參數的實用性。

在本文的配適分佈, 我們將採最大概似估計法 (maximum likelihood) 來估計參數。 為了

確保可以得到最大概似估計值, 我們會在合理的區域內隨機選取數個參數起始值, 搭配最佳化

的程序, 諸如 R 中的指令 maxLik 或 MATLAB 中的指令 fminsearchcon 來得到極大值, 再

從這些極大值中取最大值。 由於 St3(r, λ, δ) 分佈在 δ = 0 時就是 St1(r, λ) 分佈, 因此我們

將利用概似比檢定 (likelihood ratio test) 去檢定 H0 : δ = 0 對 Ha : δ 6= 0 來作出推論。
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圖 2: St1 和 St3 之分佈比較。

由圖 2 我們可以看到 St3(3, 1,−1) 與 St3(3, 1, 0) = St1(3, 1) 、St3(3, 1, 1) 分佈的形狀

有很大不同, 而 St3(3, 1,−2) 相較於 St3(3, 1,−1) 所呈現的差異更大。 因此我們猜想 |δ| 稍
大一些時, St3 才會與 St1 分得開, 又分開的程度可能會跟 r 或 λ 值有關。 因此我們選了幾種

參數組合 (r, λ, δ) 的情境, 在這些設定下分別模擬 n = 100, 150, 200 筆 St3(r, λ, δ) 分佈的

資料, 再利用 St1(r, λ) 和 St3(r, λ, δ) 分佈去配適; 此步驟會重覆 100 次, 並將這 100 次所得

到的最大概似估計值 r̂ 、 λ̂ 及 δ̂ 取平均, 並在型一錯誤率為 0.05 下, 計算其檢定力 (power),

這些結果列於表 3。 從表 3 可看出當 δ 距 0 較近時, 概似比檢定之檢定力是較低的。 又當 r 或

λ 偏高時, 概似比檢定之檢定力也會相對較低的。 在各種 St3 分佈的設定下, 隨著樣本數的增

加, St3 分佈所得到的估計值就越接近設定值,概似比檢定之檢定力也越高。 因此我們大概可推

論來自這些 St3(r, λ, δ) 分佈的資料很難由 St1(r, λ) 分佈配適得當, 也就是說 St3(r, λ, δ) 分

佈有其獨特性。
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表 3: 利用不同 St3(r, λ, δ) 分佈模擬的資料所得到的 St1 及 St3 的參數估計值之平均。

population n model r̂ λ̂ δ̂ power

100 St1 1.47 0.88 − −
St3(3, 1,−2) St3 4.16 1.00 −2.22 0.96

150 St1 1.45 0.88 − −
St3 3.47 1.01 −2.14 0.99

200 St1 1.44 0.90 − −
St3 3.12 1.03 −1.82 0.99

100 St1 2.20 1.00 − −
St3(3, 1,−1) St3 3.88 1.08 −0.65 0.39

150 St1 2.19 0.92 − −
St3 3.63 0.99 −0.46 0.55

200 St1 2.12 0.95 − −
St3 3.19 1.02 −0.48 0.72

100 St1 1.94 0.88 − −
St3(4, 1,−2) St3 5.60 0.99 −1.91 0.87

150 St1 1.87 0.92 − −
St3 4.48 1.03 −1.43 0.95

200 St1 1.87 0.90 − −
St3 4.48 1.01 −2.04 0.98

100 St1 1.89 1.71 − −
St3(4, 2,−2) St3 5.42 2.06 −2.23 0.96

150 St1 1.93 1.77 − −
St3 4.70 2.09 −2.04 0.97

200 St1 1.94 1.71 − −
St3 4.22 2.01 −1.64 0.97

100 St1 2.87 2.68 − −
St3(6, 3,−2) St3 19.17 3.13 −2.16 0.68

150 St1 2.88 2.72 − −
St3 9.91 3.18 −1.65 0.76

200 St1 2.89 2.71 − −
St3 8.58 3.08 −1.95 0.93
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表 4: 以 St1 分佈的 p.d.f. (23) 和 St3 分佈的 p.d.f. (24) 配適 418 筆血清膽固醇的最大概

似估計值 、標準誤差等值。

ξ̂ σ̂ r̂ λ̂ δ̂ p-value logLH AIC

St1 0.39 1.05 0.98 23.99 − − −814.22 1636.44

(0.01) (0.10) (0.09) (3.00)

St3 0.39 0.17 1.07 24.87 −4.95 0.03 −811.95 1633.91

(0.01) (0.04) (0.10) (5.47) (0.81)

4. 實際資料應用

本節我們將利用 St1 分佈和 St3 分佈的位置尺度族 (location-scale family) 來配適資料,

其 p.d.f. 分別為
1

σ
fX1

(

x− ξ

σ
; r, λ

)

, x ∈ R, (23)

和

1

σ
fX3

(

x− ξ

σ
; r, λ, δ

)

, x ∈ R, (24)

其中 fX1(·; r, λ) 定義如 (3) 式 、 fX3(·; r, λ, δ) 定義如 (6) 式, ξ ∈ R, σ > 0。 同樣地如前所

述, 當 δ = 0 時, (24) 式會退化為 (23) 式, 因此我們也將檢定 H0 : δ = 0 對 Ha : δ 6= 0, 並

利用概似比檢定來決定 δ 的去留, 且搭配模型準則 AIC (Akaike Information Criterion) 來

佐證模型適當性。

本節中, 我們考慮 Fleming and Harrington (2011) 中 Mayo 臨床試驗所記錄的原發性

膽汁性肝硬化十年資料 (1974 至 1984 年), 這筆資料共有 418 個病人、 20 個變數。 我們發現

其中的一個變數:血清膽固醇 (單位:毫克/公升)的平均值為 3.22 、標準差為 4.41 、偏態係數為

2.72 和峰態係數為 11.07。 很明顯地,這筆資料不具對稱性且有厚尾性質。 用 (23)式及 (24) 去

配適的結果列於表 4, 其中括號內的值為套件指令所給出的概似估計值之標準誤差 (standard

error)。 圖 3 則給出 St1 和 St3 所配適的 p.d.f. 連同資料的直方圖。 雖然圖 3 的兩個 p.d.f.

差異不大, 僅在兩 p.d.f. 的高點附近有較明顯的不同; 但是從概似比檢定的 p-value = 0.03 和

AIC 值都明顯指出 δ 6= 0, 即 St3(µ, σ, r, λ, δ) 分佈在應用上確實有優於 St1(µ, σ, r, λ) 分佈

的地方。
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圖 3: St3 及 St1 配適血清膽固醇的資料。

5. 結論

在本研究中, 我們提出一個更廣義於 Azzalini and Capitanio (2003) 的 St1 分佈的偏斜

t 分佈, 即 St3 分佈, 其能捕捉到更寬廣的偏斜性和厚尾性, 是仍富有彈性的分佈族。 St3分佈

和 St1 分佈一樣擁有很多良好的基本分佈性質, 如它的各階動差和 c.d.f. 都具有明確的表達

式。

為了瞭解 St3 分佈的資料配適潛力, 在概似比檢定的幫忙下我們可看出 St3 分佈的模擬

資料由 St3 分佈和 St1 分佈來配適的情況確實有差異。 另外, 我們引入 St1 分佈和 St3 分佈

的位置尺度族來配適實際資料時,一樣在概似比檢定的幫忙下亦可看出 St3 分佈的配適情況確

實有優於 St1 分佈的情況, 而這一點從 AIC 的比較也有相同的結論。

在配適實際資料的過程中,我們依很直覺的方法去求取最大概似估計值, 以探索新分佈的配

適狀況。雖然這有點耗時 (平均在 20 次的參數起始值下,找到最大值所花的時間約 4 分鐘), 但
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這卻是必要的探索性研究。 未來,我們可參考常用的求取最大概似值的穩定方法 − EM演算法,

來探討如何快速有效地來取得最大概似值。 此方面的研究可參考 Jamalizadeh and Lin (2017)

和 Tamandi et al. (2019), 他們提出或探討不同分佈和它們的配適狀況,經由繁重的計算而擬

定出新的 EM 演算法, 以致於能有效並快速地得到最大概似值, 並搭配不僅 AIC, 甚至 BIC

(Bayesian Information Criterion) 來說明它們的分佈具有良好的配適狀況。
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ABSTRACT

A new class of heavy-tailed distribution, which contains Azzalini and Capitanio’s

skew-t distribution [ Distributions generated by perturbation of symmetry with empha-

sis on a multivariate skew-t distribution, 2003, J. Roy. Soc. Ser. B 65, 367-389 ] as a

special case, is introduced and investigated. The probability density function, distribu-

tion function and moments of this new distribution are derived as a closed expression,

which makes the related probabilities, skewness, kurtosis and related measurements

easy to compute. Finally we illustrate the flexibility of this new distribution with

various simulated data and real data.
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