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ABSTRACT
The location-scale skew-symmetric distribution, consisting of two parts: a symmet-

ric density function and a skew function, is attracting increasing attention, especially

when observed data are obviously asymmetric. In this article, given the location and

the scale parameter, we propose a smoothing spline estimation of the skew function, and

then apply a profile likelihood approach to estimate the location and the scale. More-

over, an approximate cross-validation is derived to estimate relative Kullback-Leibler

distances to alleviate the computation burden in choosing an optimal smoothing pa-

rameter for smoothing spline modeling. The proposed skew function estimator is twice

differentiable and hence a Newton approach can be applied to find the maximum pro-

file likelihood estimation. The performance of the proposed approach was examined by

simulation and real data examples.
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1. Introduction

Because the symmetry of observed data is more often the exception rather than the

rule, the technique of constructing rival distributions against to the normal distribution

is attracting increasing attention in disciplines ranging from biomedical, engineering,

and financial science, among others. In some applications, the location and / or scale

parameter are of major concern, e.g., biomedical measurements; whereas in other ap-

plications, probabilities of events are on demand, e.g., default probabilities in finance.

We refer to [7] for a variety of such applications. Rao [19] explained this asymmetry as

being due to the fact that the observed data are drawn from a symmetric distribution

with certain distortion, not completely randomly sampled. Modeling the distortion to-

gether with a symmetric distribution has been proven a success in many applications.

A large class of this kind of modeling has been proposed in the literature and most

of these models are originated from the skew-normal distribution, Azzalini [3]. The

skew-normal density function has the form 2φ(x)Φ(αx) for some α ∈ R where φ(·) and

Φ(·) are the pdf and the cdf of standard normal distribution. The φ(·) represents the

part of random sampling, the Φ(·) represents the distortion, and α = 0 if there is no

distortion.

To extend the skew-normal, Wang et al. [22] defined the class of skew-symmetric

(SS) family. Specifically, a location-scale SS density has the form

ζ(x;µ, σ, γ, π) =
2

σ
fγ

(
x− µ

σ

)
π

(
x− µ

σ

)
where µ ∈ R, σ ∈ R+, γ is a vector of parameter other than location and scale, fγ(·) is

a symmetric pdf defined in R, and the skew function π(x) satisfies 0 ≤ π(x) ≤ 1 and

π(µ+ x) + π(µ− x) = 1, ∀x ∈ R. As an example, Nadarajah and Kotz [17], Arellano-

Valle et al. [1] and Arnold and Lin [2] investigated the skew-symmetric distribution

with f(z) = φ(z) for various π where z = (x − µ)/σ; similarly, Gupta et al. [9] and

Nadarajah and Kotz [18] studied the skew-symmetric distribution with π(z) = H(αz)

where α ∈ R and H is a cdf satisfying H ′ is symmetric about 0, and f is one of the

following pdf’s: normal, Student’s t, Cauchy, Laplace, logistic, and uniform. General
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properties of skew-symmetric distribution have been studied in [4, 7].

Furthermore, Ma et al. [10] proposed a semiparametric approach to estimate (µ, σ).

Their approach is insensitive to the posited skew function, so a reasonable guess of π(·)

should suffice to obtain a consistent estimation of (µ, σ). An obvious consequence is

that the overall density estimation of ζ(·) may deviate a lot from the histogram of data

which fails the estimation of tail probabilities. In order to have an accurate estimation

of the SS density, Ma and Hart [11] further proposed a constrained local likelihood

approach which applies local information to estimate the parameters (µ, σ) involved in

the skew function. They suggested modeling the skew function by π(x) = H(g(x)),

where H : R → [0, 1] is the cdf of any continuous symmetric distribution and g(x) is a

specialized function which is not differentiable at observed points. Frederic [6] provided

a B-spline modeling for g(·) with penalties. Essentially, B-spline is a linear combination

of functions and these functions depend on a partition of a chosen interval in the real

line. The breakup points are called interior knots. The choice of interior knots plays

an important role of curve estimations and the optimal choice of knots, in general,

increases the computation burden dramatically. Several optimal choices can be found

in [14, 13], among others.

To completely waive the knot selection issue, smoothing spline, using all the data

points as knots, is used for the skew function estimation. We refer to [21, 8] for a

detailed construction for smoothing spline and its various applications. However, for

skew function estimation, the smoothing spline theory does not apply directly because

we are looking for an odd (and smooth) function rather than a smooth function from

a general function space. Finally, the profile likelihood approach is applied to estimate

parameters. To prevent ambiguity, hereafter, we call θT = (µ, σ, γT ) the parameter

and call π(·) the skew function, although the skew function can be treated as a (vector

of) nuisance parameter. The additional parameters γ represents the parameter of the

symmetric density function except the location µ and scale σ. For example, if the

density function is the t-distribution with degrees of freedom ν then γ = ν. The

remainder of this article is arranged as follows. In Section 2, we define the proposed skew

function estimator as well as the estimation procedure followed by a short comment on
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its large sample property. In Section 3, we address issues on fitting the smoothing spline

and choosing optimal tuning parameter for smoothing splines followed by simulation

and real data analyses in Section 4. Finally, conclusions are drawn in Section 5.

2. Method

We begin with the skew function estimation via smoothing spline when θ is given.

The estimation of θ is therefore done by the profile likelihood approach. For the skew

function modeling, other than aforementioned constrains, we further assume that π(·)

is twice differentiable and square integrable over a closed interval. These conditions are

required to fit a smooth skew function.

Suppose that we have n random samples, say x1, . . . , xn, from a skew-symmetric

distribution. The negative log-likelihood of the SS distribution can be written as

l(θ, π) = − 1

n

n∑
i=1

{
log

(
2

σ
fγ

(
xi − µ

σ

))
+ log π

(
xi − µ

σ

)}
. (1)

We will use these two expressions interchangeably. When θ is known, without loss

of generality, assume that the population has µ = 0 and σ2 = 1. To relax the first

constraint on π, π : R → [0, 1], define function g : R → R and π(x) = L(g(x)) =

eg(x)/1+eg(x). With the restriction π(x)+π(−x) = 1 and after rearrangement, we have

g(x) + g(−x) = 0 for all x. This implies that g must be an odd function. Note that, in

Introduction, we mentioned that Ma and Hart [11] suggested using π(x) = H(g(x)) for

arbitrary cdf H(·) whose probability density function is symmetric. Here, we choose

π(x) = L(g(x)), where L(·) is the cdf of logistic distribution, to ensure the weak

convergence. Other choices of H(·) may need additional manipulation to prove the

convergence. For more details, please see Appendix A and B.

For a general situation, let πθ = π((x − µ)/σ) and gθ = g((x − µ)/σ). In this

article, we search for the best gθ from themth order Soblov spaceWm(S) = {g : g(i), i =

0, · · · ,m−1, are absolutely continuous, and
∫
S [g

(m)(x)]2dx <∞} and S = [−0.5, 0.5].

However, gθ must be an odd function and thus we define the subspace WmO(S) as the

collection of all odd functions in Wm(S) . Consequently, when θ is given, the smoothing
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spline estimator of gθ is

gSSθλ = argmin
gθ∈WmO(S)

[
1

n

n∑
i=1

{−gθ(xi) + log (1 + exp(gθ(xi)))}+ λ2I2m(gθ)

]
(2)

where λ > 0 and I2m(gθ) =
∫
S

[
g
(m)
θ (x)

]2
dx, the so called roughness penalty. The

explicit form of I2m(gθ) is shown in Appendix C. The calculation of gSSθλ is deferred

to Section 3.1 and Appendix C. In short, if we observe n independent variables, say

x1, · · · , xn, then, according to the chosen kernel, we can find a design matrix Z ∈ Rn×n1 ,

n < n1, and a vector b ∈ Rn1 such that (gSSθλ (x1), · · · , gSSθλ (xn))
T = Zb. Note that m is

determined by the kernel. This linear form is helpful in choosing the tuning parameter

λ in terms of deriving the approximated cross validation, as shown in Section 3.2.

With πSSθλ = L(gSSθλ ), the profile likelihood estimator of θ is simply the minimizer

of the following function

lp(θ;λ) = − 1

n

n∑
i=1

{
log

(
2

σ
fγ

(
xi − µ

σ

))
+ log

(
πSSθλ

(
xi − µ

σ

))}
(3)

where the subscript p stands for profile. In this sequel, the suggested estimation pro-

cedure is as follows:

1. Design a sequence of smoothing parameter {λj}, j = 1, · · · , q, q ≥ 2. Set initial

values of µ and σ2 by sample mean and sample variance, respectively.

2. For each λj , estimate θj by maximizing (3) and then estimate πSSθjλj
by minimizing

(2).

3. Choose the best estimation θj and πSSθjλj
by the approximated cross validation

approach defined in Section 3.2.

Last, we address the large sample property of the profile estimator of θ. According

to the semiparametic approach proposed by [10], the efficient score estimator of θ is

also consistent when plugging-in the smoothing spline estimator πSSθλ in the sense that

this estimator is a submodel of the true model. On the other hand, the consistency

and the normality of the maximum profile likelihood estimator θ̂ both hold well if the
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condition ||πSS
θ̂λ

− π∗θ∗ || = Op(||θ̂ − θ∗||) + op(n
−1/4) can be proven [15], where θ∗ and

π∗ denote the true parameter and the true skew function, respectively. In general, the

convergence rate of the smoothing spline is op(n−m/(2m+1)), [8]. However, we estimate π

and penalize the log profile likelihood with respect to g (but not to π) so modification

is needed. The result is shown in Theorem 1 and the convergence is defined with

respect to Hellinger’s distance h(g, g∗) = [0.5
∫
(
√
g(x)−

√
g∗(x))2dx]1/2. The proof is

deferred to Appendix A. Finally, with m = 1, the convergence rate of the smoothing

spline estimator is of order op(n−1/3), which is faster than op(n−1/4), so the asymptotic

normality of the proposed profile likelihood estimate θ holds whenever m ≥ 1.

Theorem 1. Let g∗ be the true underlying function and gSSθλ be the smoothing spline

estimator defined in (2). Then

h
(
L
(
gSSθ∗λ

)
, L(g∗)

)
= OP (λ)(1 + I(g∗))

provided λ−1 = OP

(
nm/2m+1

)
(1 + I(g∗))1/2.

3. Computation Issues

3.1 Fitting Smoothing Splines

Wahba [21] and Gu [8] demonstrated several ways to search for functions from Wm

by smoothing splines. They were applied to various applications. However, in our case,

the usual reproducing kernels are not applicable because we are looking for an odd

function from Wm. To this end, we modify our optimization problem and show that

the original problem (2) and the new problem (4), defined below, result in the same

minimizer. Note that, in terms of profile likelihood, the following functions g and η

depend on θ but we omit the subscript θ for shorthand.

Define g(x) = [η(x) − η(−x)]/2 for any η ∈ Wm. Then, g is an odd function, i.e.

g ∈WmO. The smoothing spline estimator of η(·) is therefore

argmin
η∈Wm(S)

[
1

n

n∑
i=1

{
− [η(xi)− η(−xi)] /2 + log

(
1 + e[η(xi)−η(−xi)]/2

)}
+ λ2I2m(η)

]
. (4)
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We define the new estimator of g as ĝ(x) = [η̂(x) − η̂(−x)]/2. On the other hand, for

any g ∈ Wm, one can always find infinity many η such that [η(x) − η(−x)]/2 = g(x),

e.g., for every c ∈ R, ηc(x) = η(x)+c results in the same g(x). This means that if there

exists a true g then there exist more than one η resulting in the same g. Therefore,

solving (2) is preferred rather than solving (4).

Furthermore, we notice that the likelihood parts in two problems are identical but

the penalty functions are not. The idea to link these two optimization problems is

factorizing the function η ∈Wm into an odd function ηO ∈WmO and an even function

ηE ∈ WmE , i.e. η = ηO + ηE . This turns out that the penalty function in (4) can be

written as

I2m(η) =

∫
S
[η

(m)
O (x)]2dx+ 2

∫
S
η
(m)
O (x)η

(m)
E (x)dx+

∫
S
[η

(m)
E (x)]2dx

and the second integrand of the right-hand-sided is an even function and hence equals

zero, i.e. I2m(η) = I2m(ηO) + I2m(ηE). Also, since WmE and WmO are subspaces and

orthogonal complements of Wm the uniqueness of the factorization is based on the

completeness of Wm and Wm is in fact complete. With this knowledge, Theorem 2

below shows the equivalence of two estimates of g. The proof is deferred to Appendix

B. The final smoothing spline fitting is identical to the one in [8] and, to make this

article self contained, we show it in Appendix C.

Theorem 2. Given λ ∈ R+, denote the minimizer of (4) as η̂λ(x) and ĝ
(1)
λ (x) =

[η̂λ(x)− η̂λ(−x)] /2; the minimizer of (2) as ĝ(2)λ (x). Then, ĝ(1)λ (x) = ĝ
(2)
λ (x).

3.2 Choosing Smoothing Parameter

The smoothing parameter λ can be obtained by minimizing the Kullback-Leibler

(KL) distance between the true function and the estimated function. The KL distance is

defined as KL(l, lλ) = El[log(l/lλ)] where l denotes the true distribution and lλ denotes

the estimated distribution with tuning parameter λ. In our case, assuming θ is known,

we are interested in choosing a λ such that KL(π∗, πSSθλ ) is minimized where π∗ is the

true skew function. Note that π is in fact a function of g, so hereafter we represent π by
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g and shorthand the smoothing spline estimator gSSθλ by gλ for convenience. Ignoring

terms in (3) that λ does not involve, we have the relative KL (RKL) distance,

RKL(λ) = −Eπ∗

[
gλ(X)− log

(
1 + egλ(X)

)]
The cross-validation (CV) method suggests an unbiased estimator of RKL as

R̂KLCV (λ) = − 1

n

n∑
i=1

{
g
[i]
λ (xi)− log

(
1 + eg

[i]
λ (xi)

)}

where g[i]λ is the solution of the delete-one-observation version of (2). By doing so, n

smoothing spline curve fits are required.

To save the computational burden, we derived an approximate CV (ACV) by mim-

icking the one mentioned in [8]. Before moving forward, we define that, for a function

or parameter ψ, ψ̃ means full data estimation and ψ[i] means leave-one-out estimation.

The rationale of ACV derivation is as follows. First, assuming θ and λ are known, the

RKL(λ) can be approximated by a quadratic form (applying Taylor expansion with

respect to g at g̃λ). The smoothing spline estimator takes the form Zb and thus the

approximated RKL(λ) is a quadratic form of b. In this sequel, g can be approximated in

one Newton step. Second, with the assumption that dropping one observation does alter

estimation a little, the leave-one-out estimate g[i]λ is approximated by the minimizer of

the approximated RKL(λ) by ignoring all the information from the ith individual. The

detailed derivation is deferred to Appendix D. Finally, an approximation of RKLCV is

R̂KLACV (λ) = − 1

n

n∑
i=1

{
g
[i]
aλ(xi)− log

(
1 + eg

[i]
aλ(xi)

)}

where g[i]aλ is provided in Appendix C. The smoothing parameter λ can be chosen so

that R̂KLACV is minimized. Note that the leave-one-out estimate g[i]λ requires several

Newton iteration steps, whereas the approximate version g
[i]
aλ needs only one Newton

step, and hence the savings from using the latter can be substantial.

There are several other computationally efficient ways to approximate CV. One

simple but effective method is the K-fold CV, which divides data into K pieces. Each
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time, K − 1 pieces are used to model fitting and the remaining one is used for model

validation or performance evaluation. Usually, five-fold CV (FFCV) is competitive

with other approximated versions. We will compare FFCV and proposed ACV with a

specific skew function in the next section.

4. Simulation and Case Study

Note that, when performing a simulation we know the underlying distribution,

so we can evaluate exact RKL by Monte Carlo integration. We call this method the

optimal method and the resulting RKL as the optimal RKL.

4.1 The Performance of ACV

In our first simulation study, we generated 200 datasets each with 100 random

samples from the density 2φ(x)Φ(−3x3+x). Three methods, ACV, FFCV and Optimal

method, were applied to choose smoothing parameter and hence to evaluate RKL’s.

The optimal choices of ACV, FFCV, and optimal RKL are shown in the upper panel of

Figure 1. On average, it appears that λ’s chosen by Optimal RKL are smaller than by

ACV, and λ’s chosen by ACV are smaller than by FFCV. However, λ’s derived by ACV

deviate from λ’s derived by Optimal RKL in a higher rate then λ’s derived by FFCV.

From the lower panel of Figure 1, FFCV performs better than ACV in terms of curve

variation. However, ACV performs well enough to compensate for the loss of model

fitting and the consumption of computing time. In the lower panel of Figure 1, 200

fits (gray lines) are overlapped. The true curves (black line) are almost in the middle

of gray shadow except at the two ends. The optimal method, calculating RKL using

Monte Carlo integration with 1000 samples, has smaller variation than the two others

though it is not very obvious. Again, this shows that ACV and FFCV approximate

RKL very well and are reliable for choosing smoothing parameters.
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Figure 1: The upper panel shows optimal λ’s derived by ACV, FFCV, and Optimal RKL
whereas the lower panel shows skew-function fits via ACV, FFCV, and optimal RKL, from left
to right. Each of them contains 200 fits (gray lines), one true curve (black line) and pointwise
90% C.I. (dotted black lines.) Figures in the lower panel have x-axis x and y-axis πSS

θ∗λ(x).
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4.2 Simulation Study

According to the previous simulation, we observe that ACV performs well and

saves computation greatly. So, we apply ACV approach to choose the tuning pa-

rameter in the following simulations to examine the performance of the proposed

smoothing spline method. Two skew functions are considered: π1(x) = Φ(sin(−3x))

and π2(x) = Φ(−3x3+x). These skew functions were also adopted in [10, 11]. We gen-

erated 1000 datasets, each consisting of 100 or 200 samples from the density function

2φ(x;µ, σ2)πθ,j(x), j = 1, 2 with µ = 3, σ2 = 1 or 2 and πθ,j(x) = πj((x − µ)/σ). For

the skew function, we evaluated the sample mean square errors

n∑
i=1

[
πθ̂,j(xi)− π̂θ̂,j(xi)

]2
/n,

which is the empirical version of the integrated mean square error (IMSE) in nonpara-

metric curve fitting literature. Results are summarized in Table 1 which shows that

the parameter estimation is numerically unbiased because all 95% confidence intervals

cover their own underlying parameter values. In addition, the estimated standard er-

rors were very close to the sample standard errors. The standard error estimates were

carried out by the inverse of the approximate Hessian, evaluated by numerical differ-

ences. However, in contrast to small variance (σ = 1), large variance (σ = 2) tended to

result in underestimation of both µ and σ. Fortunately, when the sample size increased

from 100 to 200, the underestimation was alleviated. Last, larger variance σ2 resulted

in larger IMSE and πθ,1 yields larger IMSE than πθ,2. Overall, IMSE decreased when

sample size increased.

4.3 Australian Institute of Sport Data

Next, we analyzed the Australian Institute of Sport data [5] which consists of 11

biological measurements made on 102 male and 100 female Australian athletes. We

only analyzed one of these biological measurements, the body mass index (BMI) which

is continuous and appeals to follow normal distribution in general population. It is
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Table 1: Simulation Results.

πθ,1 πθ,2

ave. ave.
s.e. est.

emp.
s.e. ave. ave.

s.e. est.
emp.
s.e.

n = 100 µ = 3 3.0015 0.0558 0.0655 2.9893 0.0716 0.0686
σ = 1 0.9975 0.0736 0.0752 0.9953 0.0852 0.0782
IMSE 0.2123 − − 0.0085 − −

n = 100 µ = 3 2.9975 0.1105 0.1281 2.8578 0.1384 0.2548
σ = 2 1.9958 0.1465 0.1488 1.8836 0.1540 0.2455
IMSE 0.2126 − − 0.0716 − −

n = 200 µ = 3 3.0006 0.0409 0.0447 2.9979 0.0538 0.0600
σ = 1 1.0001 0.0514 0.0488 0.9990 0.0600 0.0594
IMSE 0.2083 − − 0.0049 − −

n = 200 µ = 3 3.0056 0.0818 0.0895 2.9153 0.1066 0.2025
σ = 2 1.9913 0.1014 0.1070 1.9458 0.1140 0.1532
IMSE 0.2060 − − 0.0095 − −

reasonable to believe that athlete group may be the consequence of “bias sampling” or

of “selection” and to assume that BMI’s in athletic population follows a skew-normal

distribution (or other generalization.)

Figure 2 shows contour plots for the log-profile-likelihood of 102 male (left) and

100 female (right) athletes’ BMI. Each summit marked by a cross locates the MLE

of location µ and scale σ parameter. The right-most plot shows the resulting skew

functions of male (dotted line) and female (solid line). Small bars on the top represent

the normalized BMI’s of males while bars on the bottom are for females. Since the

likelihood may not be strictly convex, we plotted the contours of likelihood in Figure

2. It seems to be smooth and unimodal but using grid search is recommended to find

good initial values. The skew function is shown in the very right-hand-panel of Figure

2. Results are shown in Table 2. In general, the proposed method yields estimates

which are closer to the normal fit than the results of [10].
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Figure 2: From right to left: contour of the log likelihood (1) for male data, contour for female
data, and skew function estimates for both male and female.

Table 2: Australian Institute of Sport Data.

Method
Male Female

µ̂ ŝe(µ̂) σ̂ ŝe(σ̂) µ̂ ŝe(µ̂) σ̂ ŝe(σ̂)

Normal 23.90 0.27 2.77 0.20 21.99 0.26 2.65 0.19
πSS 20.79 0.66 2.93 0.29 19.45 0.42 3.65 0.34

The row named Normal presents the normal fit of the data whereas the πSS row presents the proposed
fit.

4.4 Peruvian Indian Pulse Data

This dataset consists of 39 pulse rates of Peruvian indians [20]. The pulse data

seems to have a heavier right-tail and there are no other covariates to explain the

skewness. Skew-symmetric modeling is therefore suggested. Again, the contour plot of

log likelihood against two parameters is shown in Figure 3. With a relevant fine-search,

parameter estimates are summarized in Table 3. Since the dataset consists of only

39 individuals, we are less confident to claim that it really follows a skew-symmetric

distribution. However, our density fit (the very left panel of Figure 3) captures the

major peak and a protuberance at the right end.
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Figure 3: The left panel is the histogram of Peruvian Indian Pulse data. The dashed line
represents the proposed fit. The middle panel is the log profile likelihood contour plot. The
right panel is the skew function solved by proposed method where the x-axis is pulse and the
y-axis is the estimated skew-function.

Table 3: Peruvian Indian Pulse Data.

Method µ̂ ŝe(µ̂) σ̂ ŝe(σ̂)

Normal 70.051 1.526 9.594 1.108
πSS 70.193 2.933 9.409 0.918

The row named Normal presents the normal fit of the data whereas the
πSS row presents the proposed fit.

5. Concluding Remarks

For finding the MLE of the profile likelihood, an inevitable difficulty is that lp(θ)

may not be concave in terms of θ, so a good initial value is important to the convergence

of the algorithm. Following [10], initial values are taken in a reasonable range. If these

initial values result in different θ or π(·) then the MLE is chosen such that that the

corresponding likelihood (1) is maximized.

We advocate the use of a smoothing spline to estimate the skew function because

the proposed estimator has two major merits: first, unlike the local likelihood approach

[11], the skew function estimator is twice differentiable everywhere and, second, unlike

the B-spline approach [6], there is no additional consideration in choosing interior knots.

Finally, together with the proposed ACV, the estimates of θ and π behave no worse

than the one using original CV and our approach reduces computation burden greatly.



SMOOTHING SPLINE ESTIMATION FOR SKEW-SYMMETRIC DENSITY
FUNCTIONS 37

Appendix A. Proof of Theorem 1

The proof of Theorem 1 is almost identical to Theorem 10.6 in [16] but with dif-

ferent arguments in Hellinger metric. Before moving forward, we define useful subsets:

Gm(M) = {g : g ∈Wm, Im(g) ≤M} for some 1 ≤M <∞; GmO(M) = Gm(M)∩WmO;

and GF
m($,M) = {$(g) : g ∈ GmO(M)} for some function $. These subsets will be

adopted in various situations below in order to show convergence. Besides, analogous

to Lemma 10.5 of [16], we have basic inequality

h2(ν(ĝ), ν(g∗)) + 4λ2I2m(ĝ) ≤ 16

∫
ρ ◦ ν(ĝ)d(Pn − P ) + 4λ2I2m(g∗)

where ρ ◦ ν(g) ≡ ρ(ν(g)), ρ(w) = 0.5 log[(w + w∗)/2w∗], ν(g) = −g + log(1 + eg) and

log π = ν(g). The function ρ is well defined since ν(w) > 0 ∀w ∈ R.

Equipping with above basic inequality, the proof of convergence is done by showing

that the regularity conditions in Theorem 10.6 of van de Geer (2000) hold. These

conditions are: 1) for any M > 1 and g ∈ G1 ≡ GF
m(ρ ◦ ν,M) = {ρ ◦ ν(g) : g ∈

WmO, Im(g) + Im(g0) ≤ M}, and ||g − g0|| ≤ h(g, g0); 2) supg∈G1
h(g, g0) ≤ c0M , for

some c0 > 0; 3) HB(δ,G1, P ) ≤ A
(
M
δ

)1/m, for all δ > 0; and 4) supg∈G1
|g − g0|∞ ≤

c0M . Here, HB(·) denotes the bracketing entropy of the corresponding class of function

under square-norm metric. Condition 1 and 2 are inherited by Hellinger metric so we

omit them. Condition 3 has been shown in Lemma 1 below together with the fact

that G1 has finite entropy [16]. Finally, condition 4 is satisfied because both ν and ρ

are Lipschitz and monotone decreasing which can be proved by taking derivatives, see

Lemma 2.

Lemma 1. Let ϕ be Lipschitz and monotone. For any δ > 0 and m ∈ N , we have

HB(c1δ,GF
m(ϕ,M), P ) ≤ HB(δ,Gm(M), P ) ≤ A

(
M

δ

) 1
m

,

for some positive constant c1.

Proof. The second inequality is proven by [16]. Therefore, we only show the first one.

By the definition of bracketing, for all g ∈ Gm, there exists a pair {gL, gU} such that
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gL ≤ g ≤ gU and ||gU −gL|| ≤ δ, δ > 0. The smallest number of such pairs is associated

with the entropy. Let ϕ(·) be a continuous monotone and Lipschitz function. Due to the

monotonicity and Lipschitz property, ϕ(gL) ≤ ϕ(g) ≤ ϕ(gU ) for monotone increasing

and ϕ(gU ) ≤ ϕ(g) ≤ ϕ(gL) for monotone decreasing. Consequently, ||ϕ(gU )−ϕ(gL)|| ≤

c1||gU − gL|| ≤ c1δ.

Lemma 2. For any g ∈ GmO(M), we have 1) ν(g) is Lipschitz and monotone decreasing

in g; and 2) ρ ◦ ν(g) is Lipschitz and monotone decreasing in g.

Proof. With the fact that if the first derivative of a function is bounded then this

function is Lipschitz, two results can be shown by simply taking derivative. For any

g1, g2 ∈ GmO(M),

1. Since −1 < d
dgν(g) = −1 + eg

1+eg < 0, by mean value theorem, we have |ν(g1) −

ν(g2)| = | d
dgν(g)|g=gm |g1 − g2| where gm is an intermediate value between g1 and

g2. Therefore, |ν(g1)− ν(g2)| ≤ c1|g1 − g2| with c1 = 1.

2. Again,

0 <
d

dν
ρ(ν) =

1

2

1

ν + ν∗
<

1

2ν∗
≡ c2

where ν = ν(g) and ν∗ = ν(g∗). This implies

|ρ ◦ ν(g1)− ρ ◦ ν(g2)| ≤ c2|ν(g1)− ν(g2)| ≤ c2c1|g1 − g2|,

i.e. ρ ◦ ν(g) is Lipschitz. Furthermore, since d
dgν < 0 and d

dν ρ > 0 we conclude

that ρ ◦ ν(g) is monotone decreasing in g.

Appendix B: Proof of Theorem 2

Proof. In order to preventing ambiguity, denote the minimizer of (2) with tuning pa-

rameter λ by ĝ
(1)
λ and the minimizer of of (4) with λ by η̂

(2)
λ and hence, ĝ(2)λ . Let

η = ηO + ηE where η ∈ Wm, ηO ∈ WmO and ηE ∈ WmE . Given η, ηO and ηE are
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unique. Thus,

η̂
(2)
λ = argmin

η∈Wm

[
1

n

n∑
i=1

{
− [η(xi)− η(−xi)] /2 + log

(
1 + e[η(xi)−η(−xi)]/2

)}
+ λ2I2m(η)

]

= argmin
ηO∈WmO,ηE∈WmE

[
1

n

n∑
i=1

{
−ηO(xi) + log

(
1 + eηO(xi)

)}
+ λ2

{
I2m(ηO) + I2m(ηE)

}]

= argmin
ηO∈WmO

[
1

n

n∑
i=1

{
−ηO(xi) + log(1 + eηO(xi))

}
+ λ2I2m(ηO)

]
+ argmin

η∈WmE

λ2I2m(ηE)

= η̂
(2)
O,λ + η

(2)
E,λ

where η(2)E,λ can be arbitrary function in WmE such that Im(η
(2)
E,λ) = 0. The first min-

imization of the last second equation is exactly problem (4) but replacing g by ηO,

i.e. η̂
(2)
O,λ = ĝ

(1)
λ . Besides, since ĝ

(2)
λ =

[
η̂
(2)
λ (x)− η̂

(2)
λ (−x)

]
/2 = η̂

(2)
O,λ we conclude

ĝ
(1)
λ = ĝ

(2)
λ .

Appendix C: Smoothing Spline Estimation

In [8], the polynomial smoothing spline corresponds to a reproducing kernel R

which can be orthogonally partitioned as R = R0+R1. One particular kernel for W2 is

R0(x, y) = 1+k1(x)k1(y) and R1(x, y) = k2(x)k2(y)−k4(|x−y|) where k1(z) = z−0.5,

k2(z) = k21(z)/2 − 1/24 and k4(z) = (k41(z) − k21(z)/2 + 7/240)/24. By representation

theory, η(x) = d1+d2x+
∑n

j=1 ciR1(xj , x) for some unknown constant c = (c1, · · · , cn)T

and d = (d1, d2)
T. Recall that g(x) = [η(x)− η(−x)]/2 and hence, d1 can be arbitrary.

We set d1 = 0. Write Qc + Sd where the (i, j)th element of Q are Qij = Qxi(xj) =

R1(xi, xj) and Sij = Sxi(xj) = xi. Consequently, solving (4) is equivalent to find the

solution of τ = (cT, d)T. Thus, we have

pl(g) = − 1

n

n∑
i=1

WT
i τ +

1

n

n∑
i=1

log(1 + exp{Wi
Tτ}) + λ2cTQc (5)

where Wij = [Qxi ,Sxi ](xj)− [Qxi ,Sxi ](−xj) and Wi represents the ith row of matrix

W
¯

. The gradient and Hessian of (5) are

1

n
WT(pτ − 1n) + 2λ2Q′τ and 1

n
WTVτW + 2λ2Q′,
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respectively, where we define

Q′ =

[
Q 0

0T 0

]
, pτ,i =

exp{WT
i τ}

1 + exp{WT
i τ}

,

Vτ as a diagonal matrix with diagonal elements Vτ,ii = pτ,i(1 − pτ,i), i = 1, ..., n and

1n as a 1-vector with length n. Applying Newton-Raphson algorithm, the updating

formula is

τnew = τ −
[
1

n
WTVτW + 2λ2Q′

]− [
1

n
WT(pτ − 1n) + 2λ2Q′τ

]
where “−” represents the generalized inverse.

Note that the aforementioned reproducing kernel is defined on [0, 1] whereas our

problem is on S = [−0.5, 0.5]. This does not fail the result because both k2(·) and k4(·)

are functions of k1(x) = x − 0.5. So, in practice, we can scale the data into [0, 1] and

use the regular polynomial kernel or scale the data into [−0.5, 0.5] and use the modified

kernel with k1(x) = x.

Appendix D: Derivation of the Approximate Cross Vali-
dation

The ACV is derived by a second order Taylor expansion. Denote g as the true

underlying function and g̃ as the estimate using (5). By expanding g at g̃, we have

g − log (1 + eg) ≈ K(g̃)− 1

2

[
(g − g̃)

eg̃/2

1 + eg̃
− 1

eg̃/2

]2

where K(g) = g− log(1+ eg)+ e−g/2. Notice that g̃ is a known function and hence the

first summand is a fixed value, say q. Thus, the leave-one-out version of the approximate

log-likelihood has the form

Apl[i] = q[i] +
1

2(n− 1)

{
τTAiτ − 2τTAiτ̃ − 2τTWTΛ[i]p2 + q2

}
+ λ2τTQ′τ
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where Ai = WTΓ[i]W, Γ = Λ2, Λ is a diagonal matrix with (i, i) element eg̃(xi)/2/(1 +

eg̃(xi)); p2 is a vector with ith element e−g̃(xi)/2; for matrix B, B[i]
ij = Bij , ∀j 6= i, and

B
[i]
ii = 0; and q2 is another function which involves no τ . Consequently the minimizer

of Apl[i] is

τ[i] =
[
Ai + 2λ2(n− 1)Q′]− [

Aiτ̃ +WTΛ[i]p2

]
.

Let ga[i] = Wτ[i], i = 1, 2, ..., n and the approximation of R̂KLCV is

R̂KLACV = − 1

n

n∑
i=1

{
ga[i](xi)− log

(
1 + e

ga
[i]
(xi)

)}
.

The smoothing parameter λ is chosen so that R̂KLACV is minimized.
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偏斜化對稱分佈函數之曲線平滑估計
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摘 要

當資料呈現非對稱分佈時, 考慮有關位置尺度族之偏斜化對稱分佈是一可行的方法。 位置

尺度族偏斜化對稱分佈函數由二部份組成, 其一是一屬於尺度族的對稱分佈函數, 其二則是一

偏斜函數。 本文採用最大化剖面概似函數方法估計位置及尺度參數, 用無母數方法中之曲線平

滑方法估計偏斜函數。 此外, 我們亦推導出相對 Kullback-Leibler 距離, 用以簡化使用資料交

叉驗證的計算量。 對於曲線平滑方法, 本文使用的核函數是二次可微, 所以文獻上的大樣本性質

及計算估計量的演算法得以套用。 我們最後以電腦模擬及二個實證分析來展示本文所提出方法

之可用性。

關鍵詞: 近似交叉驗證 、剖面概似函數 、偏斜化對稱分佈函數 、曲線平滑估計。
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