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ABSTRACT

The location-scale skew-symmetric distribution, consisting of two parts: a symmet-
ric density function and a skew function, is attracting increasing attention, especially
when observed data are obviously asymmetric. In this article, given the location and
the scale parameter, we propose a smoothing spline estimation of the skew function, and
then apply a profile likelihood approach to estimate the location and the scale. More-
over, an approximate cross-validation is derived to estimate relative Kullback-Leibler
distances to alleviate the computation burden in choosing an optimal smoothing pa-
rameter for smoothing spline modeling. The proposed skew function estimator is twice
differentiable and hence a Newton approach can be applied to find the maximum pro-
file likelihood estimation. The performance of the proposed approach was examined by

simulation and real data examples.
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1. Introduction

Because the symmetry of observed data is more often the exception rather than the
rule, the technique of constructing rival distributions against to the normal distribution
is attracting increasing attention in disciplines ranging from biomedical, engineering,
and financial science, among others. In some applications, the location and / or scale
parameter are of major concern, e.g., biomedical measurements; whereas in other ap-
plications, probabilities of events are on demand, e.g., default probabilities in finance.
We refer to [7] for a variety of such applications. Rao [19] explained this asymmetry as
being due to the fact that the observed data are drawn from a symmetric distribution
with certain distortion, not completely randomly sampled. Modeling the distortion to-
gether with a symmetric distribution has been proven a success in many applications.
A large class of this kind of modeling has been proposed in the literature and most
of these models are originated from the skew-normal distribution, Azzalini [3]. The
skew-normal density function has the form 2¢(z)®(ax) for some o € R where ¢(-) and
®(-) are the pdf and the cdf of standard normal distribution. The ¢(-) represents the
part of random sampling, the ®(-) represents the distortion, and « = 0 if there is no

distortion.

To extend the skew-normal, Wang et al. [22] defined the class of skew-symmetric

(SS) family. Specifically, a location-scale SS density has the form

C(CC;M,O’,’Y,TF) = ;f'\/ ($;u> m <$ ; N)

where p € R, 0 € R, 7 is a vector of parameter other than location and scale, f,(-) is

a symmetric pdf defined in R, and the skew function 7(x) satisfies 0 < w(x) < 1 and
m(p+x)+7(p—x) =1, Vo € R. As an example, Nadarajah and Kotz [17], Arellano-
Valle et al. [1] and Arnold and Lin [2] investigated the skew-symmetric distribution
with f(2) = ¢(z) for various m where z = (z — p)/o; similarly, Gupta et al. [9] and
Nadarajah and Kotz [18] studied the skew-symmetric distribution with 7(z) = H(az)
where o € R and H is a cdf satisfying H' is symmetric about 0, and f is one of the

following pdf’s: normal, Student’s ¢, Cauchy, Laplace, logistic, and uniform. General
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properties of skew-symmetric distribution have been studied in [4, 7].

Furthermore, Ma et al. [10] proposed a semiparametric approach to estimate (u, o).
Their approach is insensitive to the posited skew function, so a reasonable guess of 7(+)
should suffice to obtain a consistent estimation of (u,0). An obvious consequence is
that the overall density estimation of {(-) may deviate a lot from the histogram of data
which fails the estimation of tail probabilities. In order to have an accurate estimation
of the SS density, Ma and Hart [11] further proposed a constrained local likelihood
approach which applies local information to estimate the parameters (i, o) involved in
the skew function. They suggested modeling the skew function by 7(x) = H(g(x)),
where H: R — [0, 1] is the cdf of any continuous symmetric distribution and g(z) is a
specialized function which is not differentiable at observed points. Frederic [6] provided
a B-spline modeling for g(-) with penalties. Essentially, B-spline is a linear combination
of functions and these functions depend on a partition of a chosen interval in the real
line. The breakup points are called interior knots. The choice of interior knots plays
an important role of curve estimations and the optimal choice of knots, in general,
increases the computation burden dramatically. Several optimal choices can be found

in [14, 13], among others.

To completely waive the knot selection issue, smoothing spline, using all the data
points as knots, is used for the skew function estimation. We refer to [21, 8] for a
detailed construction for smoothing spline and its various applications. However, for
skew function estimation, the smoothing spline theory does not apply directly because
we are looking for an odd (and smooth) function rather than a smooth function from
a general function space. Finally, the profile likelihood approach is applied to estimate
parameters. To prevent ambiguity, hereafter, we call §T = (1, 0, 'yT) the parameter
and call 7(-) the skew function, although the skew function can be treated as a (vector
of) nuisance parameter. The additional parameters 7 represents the parameter of the
symmetric density function except the location p and scale o. For example, if the
density function is the ¢-distribution with degrees of freedom v then v = v. The
remainder of this article is arranged as follows. In Section 2, we define the proposed skew

function estimator as well as the estimation procedure followed by a short comment on
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its large sample property. In Section 3, we address issues on fitting the smoothing spline
and choosing optimal tuning parameter for smoothing splines followed by simulation

and real data analyses in Section 4. Finally, conclusions are drawn in Section 5.

2. Method

We begin with the skew function estimation via smoothing spline when € is given.
The estimation of 0 is therefore done by the profile likelihood approach. For the skew
function modeling, other than aforementioned constrains, we further assume that 7(-)
is twice differentiable and square integrable over a closed interval. These conditions are

required to fit a smooth skew function.

Suppose that we have n random samples, say x1,..., Ty, from a skew-symmetric

distribution. The negative log-likelihood of the SS distribution can be written as

1(9,77)——;;:{1% (ijl, (xi;M>>+log7r<$i;H>}. (1)

We will use these two expressions interchangeably. When 6 is known, without loss

of generality, assume that the population has i = 0 and 02 = 1. To relax the first
constraint on m, m: R — [0,1], define function g : R — R and n(x) = L(g(z)) =
e9(®) /149 With the restriction 7(z)+7(—x) = 1 and after rearrangement, we have
g(x) + g(—z) = 0 for all x. This implies that g must be an odd function. Note that, in
Introduction, we mentioned that Ma and Hart [11] suggested using 7w(x) = H(g(z)) for
arbitrary cdf H(-) whose probability density function is symmetric. Here, we choose
m(x) = L(g(x)), where L(-) is the cdf of logistic distribution, to ensure the weak
convergence. Other choices of H(-) may need additional manipulation to prove the

convergence. For more details, please see Appendix A and B.

For a general situation, let mp = 7((z — p)/o) and g9 = g((z — p)/o). In this
article, we search for the best gg from the mth order Soblov space W, (S) = {g: ¢\V,i =
0,---,m—1, are absolutely continuous, and fs[g(m) (z)]?dz < oo} and S = [-0.5,0.5].
However, gy must be an odd function and thus we define the subspace W,,,0(S) as the

collection of all odd functions in W,,,(S) . Consequently, when 6 is given, the smoothing
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spline estimator of gy is
1 n
gon = argmin | =Y {—go(x;) +log (1 + exp(gs(w:)))} + X1, (96) (2)
90€Wno(S) | i3

where A > 0 and I2(gs) = [ [gém) (x)rdaz, the so called roughness penalty. The
explicit form of I2,(gg) is shown in Appendix C. The calculation of gg;\g is deferred
to Section 3.1 and Appendix C. In short, if we observe n independent variables, say
x1,- - , Iy, then, according to the chosen kernel, we can find a design matrix Z € R™*"™,
n < ni, and a vector b € R™ such that (g3¢ (z1), -, g5% (zn))T = Zb. Note that m is
determined by the kernel. This linear form is helpful in choosing the tuning parameter
A in terms of deriving the approximated cross validation, as shown in Section 3.2.
With 71'55\3 = L(ggf ), the profile likelihood estimator of # is simply the minimizer

of the following function

1 (0: ) = —;g{log Cr (=) v (w5 (21)) @

where the subscript p stands for profile. In this sequel, the suggested estimation pro-

cedure is as follows:

1. Design a sequence of smoothing parameter {\;}, j =1,---,¢, ¢ > 2. Set initial

values of 1 and 02 by sample mean and sample variance, respectively.

2. For each \;, estimate 6; by maximizing (3) and then estimate ﬂng}\j by minimizing

(2)-

3. Choose the best estimation 6; and 77@95\3_ by the approximated cross validation

approach defined in Section 3.2.

Last, we address the large sample property of the profile estimator of 6. According
to the semiparametic approach proposed by [10], the efficient score estimator of € is
also consistent when plugging-in the smoothing spline estimator 7TGS>‘\9 in the sense that
this estimator is a submodel of the true model. On the other hand, the consistency

and the normality of the maximum profile likelihood estimator 6 both hold well if the
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= 0,(/16 — 6*|]) + 0p(n~'/*) can be proven [15], where 6* and

condition |\7r5§ — T«
7* denote the true parameter and the true skew function, respectively. In general, the
convergence rate of the smoothing spline is 0, (n~"/(m+1)) '[8]. However, we estimate 7
and penalize the log profile likelihood with respect to g (but not to 7) so modification
is needed. The result is shown in Theorem 1 and the convergence is defined with
respect to Hellinger’s distance h(g, ¢*) = [0.5 [(y/g(z) — \/g* (z))?dz]'/2. The proof is
deferred to Appendix A. Finally, with m = 1, the convergence rate of the smoothing
spline estimator is of order 0,(n~/3), which is faster than o,(n~'/%), so the asymptotic

normality of the proposed profile likelihood estimate 6 holds whenever m > 1.

Theorem 1. Let g* be the true underlying function and g@gf be the smoothing spline

estimator defined in (2). Then
h(L(955) , L(g") = Op(N) (1 + 1(5)

provided A= = Op (n™/2m+1) (1 + I(g*))'/2.

3. Computation Issues

3.1 Fitting Smoothing Splines

Wahba [21] and Gu [8] demonstrated several ways to search for functions from W,
by smoothing splines. They were applied to various applications. However, in our case,
the usual reproducing kernels are not applicable because we are looking for an odd
function from W,,. To this end, we modify our optimization problem and show that
the original problem (2) and the new problem (4), defined below, result in the same
minimizer. Note that, in terms of profile likelihood, the following functions g and 7

depend on 6 but we omit the subscript 6 for shorthand.

Define g(z) = [n(z) — n(—=)]/2 for any n € Wy,. Then, g is an odd function, i.e.

g € Wno. The smoothing spline estimator of 7(-) is therefore

=5 = It — i) 2+ log (1+ elrte=nt=eal2) ] A?Imn)] @

n -
=1

arg min
nEWm(S)
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We define the new estimator of g as g(x) = [(x) — 7(—=)]/2. On the other hand, for
any g € W, one can always find infinity many 7 such that [n(x) — n(—=z)]/2 = g(x),
e.g., for every ¢ € R, n.(z) = n(x) + ¢ results in the same g(x). This means that if there
exists a true g then there exist more than one 7 resulting in the same g. Therefore,

solving (2) is preferred rather than solving (4).

Furthermore, we notice that the likelihood parts in two problems are identical but
the penalty functions are not. The idea to link these two optimization problems is
factorizing the function n € Wy, into an odd function np € W,,0 and an even function
ng € Wmg, i.e. 1 =no + ng. This turns out that the penalty function in (4) can be

written as

I, (n) _/[ o da?—|—2/ )dx_,_/[m(gm)( )|2da

and the second integrand of the right-hand-sided is an even function and hence equals
zero, i.e. I2,(n) = I%(no) + I%(nE). Also, since W,z and W,,0 are subspaces and
orthogonal complements of W,, the uniqueness of the factorization is based on the
completeness of W, and W, is in fact complete. With this knowledge, Theorem 2
below shows the equivalence of two estimates of g. The proof is deferred to Appendix
B. The final smoothing spline fitting is identical to the one in [8] and, to make this

article self contained, we show it in Appendix C.

Theorem 2. Given A\ € R, denote the minimizer of (4) as Nx(x) and g( )( ) =
[a(x) — Na(—x)] /2; the minimizer of (2) as Q/(\2)(:L'). Then, g( )( ) = gg\ )( ).

3.2 Choosing Smoothing Parameter

The smoothing parameter A can be obtained by minimizing the Kullback-Leibler
(KL) distance between the true function and the estimated function. The KL distance is
defined as KL(l,1)) = E;[log(l/l,)] where [ denotes the true distribution and I, denotes
the estimated distribution with tuning parameter A. In our case, assuming 6 is known,

SS

we are interested in choosing a A such that KL(7*, 755) is minimized where 7* is the

true skew function. Note that 7 is in fact a function of g, so hereafter we represent m by
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g and shorthand the smoothing spline estimator ggf by g, for convenience. Ignoring

terms in (3) that A does not involve, we have the relative KL (RKL) distance,
RKL()) = —Ez- [QA(X) —log (1 + eg*(X)ﬂ

The cross-validation (CV) method suggests an unbiased estimator of RKL as

RREow () = _% E": {oi) (i) —10g (1+ e @) }

where g[;} is the solution of the delete-one-observation version of (2). By doing so, n

smoothing spline curve fits are required.

To save the computational burden, we derived an approximate CV (ACV) by mim-
icking the one mentioned in [8]. Before moving forward, we define that, for a function
or parameter 1, @Z) means full data estimation and ! means leave-one-out estimation.
The rationale of ACV derivation is as follows. First, assuming # and A are known, the
RKL(A) can be approximated by a quadratic form (applying Taylor expansion with
respect to g at gy). The smoothing spline estimator takes the form Zb and thus the
approximated RKL()) is a quadratic form of b. In this sequel, g can be approximated in
one Newton step. Second, with the assumption that dropping one observation does alter
estimation a little, the leave-one-out estimate gg\i] is approximated by the minimizer of
the approximated RKL()) by ignoring all the information from the i** individual. The
detailed derivation is deferred to Appendix D. Finally, an approximation of RKLgy is

n

RKLacv(A) = _% Z {g‘[j;(l‘i) —log (1 + egg;(xi))}

1=

(2]

where g\ is provided in Appendix C. The smoothing parameter A can be chosen so

that RKL Acv is minimized. Note that the leave-one-out estimate g[j] requires several

Newton iteration steps, whereas the approximate version g([ﬁ\ needs only one Newton

step, and hence the savings from using the latter can be substantial.

There are several other computationally efficient ways to approximate CV. One

simple but effective method is the K-fold CV, which divides data into K pieces. Each



SMOOTHING SPLINE ESTIMATION FOR SKEW-SYMMETRIC DENSITY
FUNCTIONS 31

time, K — 1 pieces are used to model fitting and the remaining one is used for model
validation or performance evaluation. Usually, five-fold CV (FFCV) is competitive
with other approximated versions. We will compare FFCV and proposed ACV with a

specific skew function in the next section.

4. Simulation and Case Study

Note that, when performing a simulation we know the underlying distribution,
so we can evaluate exact RKL by Monte Carlo integration. We call this method the

optimal method and the resulting RKL as the optimal RKL.

4.1 The Performance of ACV

In our first simulation study, we generated 200 datasets each with 100 random
samples from the density 2¢(x)®(—3x3+z). Three methods, ACV, FFCV and Optimal
method, were applied to choose smoothing parameter and hence to evaluate RKL’s.
The optimal choices of ACV, FFCV, and optimal RKL are shown in the upper panel of
Figure 1. On average, it appears that \’s chosen by Optimal RKL are smaller than by
ACV, and X’s chosen by ACV are smaller than by FFCV. However, A’s derived by ACV
deviate from \’s derived by Optimal RKL in a higher rate then A’s derived by FFCV.
From the lower panel of Figure 1, FFCV performs better than ACV in terms of curve
variation. However, ACV performs well enough to compensate for the loss of model
fitting and the consumption of computing time. In the lower panel of Figure 1, 200
fits (gray lines) are overlapped. The true curves (black line) are almost in the middle
of gray shadow except at the two ends. The optimal method, calculating RKL using
Monte Carlo integration with 1000 samples, has smaller variation than the two others
though it is not very obvious. Again, this shows that ACV and FFCV approximate

RKL very well and are reliable for choosing smoothing parameters.
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Figure 1: The upper panel shows optimal \’s derived by ACV, FFCV, and Optimal RKL
whereas the lower panel shows skew-function fits via ACV, FFCV, and optimal RKL, from left
to right. Each of them contains 200 fits (gray lines), one true curve (black line) and pointwise
90% C.I. (dotted black lines.) Figures in the lower panel have x-axis x and y-axis 753 ().
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4.2 Simulation Study

According to the previous simulation, we observe that ACV performs well and
saves computation greatly. So, we apply ACV approach to choose the tuning pa-
rameter in the following simulations to examine the performance of the proposed
smoothing spline method. Two skew functions are considered: mi(z) = ®(sin(—3z))
and 7ma(z) = ®(—323 + ). These skew functions were also adopted in [10, 11]. We gen-
erated 1000 datasets, each consisting of 100 or 200 samples from the density function
2¢(z; p, 0wy j(z), 5 = 1,2 with p =3, 0> = 1 or 2 and mp j(x) = m;((x — p)/0). For

the skew function, we evaluated the sample mean square errors

n 2

> o) = s @),

i=1
which is the empirical version of the integrated mean square error (IMSE) in nonpara-
metric curve fitting literature. Results are summarized in Table 1 which shows that
the parameter estimation is numerically unbiased because all 95% confidence intervals
cover their own underlying parameter values. In addition, the estimated standard er-
rors were very close to the sample standard errors. The standard error estimates were
carried out by the inverse of the approximate Hessian, evaluated by numerical differ-
ences. However, in contrast to small variance (o = 1), large variance (o = 2) tended to
result in underestimation of both p and o. Fortunately, when the sample size increased

2 resulted

from 100 to 200, the underestimation was alleviated. Last, larger variance o
in larger IMSE and 7p 1 yields larger IMSE than my . Overall, IMSE decreased when

sample size increased.

4.3 Australian Institute of Sport Data

Next, we analyzed the Australian Institute of Sport data [5] which consists of 11
biological measurements made on 102 male and 100 female Australian athletes. We
only analyzed one of these biological measurements, the body mass index (BMI) which

is continuous and appeals to follow normal distribution in general population. It is
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Table 1: Simulation Results.

9,1 79,2
ave. ave. emp. ave. ave. emp.
s.e. est. s.e. s.e. est. s.e.
n=100 pu= 3.0015 0.0558 0.0655 2.9893 0.0716 0.0686
o= 0.9975 0.0736 0.0752 0.9953 0.0852 0.0782
IMSE  0.2123 — — 0.0085 — —
n=100 pu= 2.9975 0.1105 0.1281 2.8578 0.1384 0.2548
o= 1.9958 0.1465 0.1488 1.8836 0.1540 0.2455
IMSE  0.2126 — — 0.0716 — —
n=200 wu=3 3.0006 0.0409 0.0447 2.9979 0.0538 0.0600
o= 1.0001 0.0514 0.0488 0.9990 0.0600 0.0594
IMSE  0.2083 — — 0.0049 — —
n=200 p= 3.0056 0.0818 0.0895 2.9153 0.1066 0.2025
oc=2 1.9913 0.1014 0.1070 1.9458 0.1140 0.1532
IMSE  0.2060 — — 0.0095 — —

reasonable to believe that athlete group may be the consequence of “bias sampling” or
of “selection” and to assume that BMI’s in athletic population follows a skew-normal

distribution (or other generalization.)

Figure 2 shows contour plots for the log-profile-likelihood of 102 male (left) and
100 female (right) athletes” BMI. Each summit marked by a cross locates the MLE
of location pu and scale o parameter. The right-most plot shows the resulting skew
functions of male (dotted line) and female (solid line). Small bars on the top represent
the normalized BMI’s of males while bars on the bottom are for females. Since the
likelihood may not be strictly convex, we plotted the contours of likelihood in Figure
2. It seems to be smooth and unimodal but using grid search is recommended to find
good initial values. The skew function is shown in the very right-hand-panel of Figure
2. Results are shown in Table 2. In general, the proposed method yields estimates

which are closer to the normal fit than the results of [10].
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Figure 2: From right to left: contour of the log likelihood (1) for male data, contour for female
data, and skew function estimates for both male and female.

Table 2: Australian Institute of Sport Data.

Method /\Male _ /Eemale _
f se(fi) o se(0) f se(f1) o se(0)

Normal  23.90 027 277  0.20 21.99 026 265  0.19
35 20.79 0.66 2.93 0.29 19.45 0.42 3.65 0.34

The row named Normal presents the normal fit of the data whereas the 7°° row presents the proposed
fit.

4.4 Peruvian Indian Pulse Data

This dataset consists of 39 pulse rates of Peruvian indians [20]. The pulse data
seems to have a heavier right-tail and there are no other covariates to explain the
skewness. Skew-symmetric modeling is therefore suggested. Again, the contour plot of
log likelihood against two parameters is shown in Figure 3. With a relevant fine-search,
parameter estimates are summarized in Table 3. Since the dataset consists of only
39 individuals, we are less confident to claim that it really follows a skew-symmetric
distribution. However, our density fit (the very left panel of Figure 3) captures the

major peak and a protuberance at the right end.
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Figure 3: The left panel is the histogram of Peruvian Indian Pulse data. The dashed line
represents the proposed fit. The middle panel is the log profile likelihood contour plot. The
right panel is the skew function solved by proposed method where the x-axis is pulse and the
y-axis is the estimated skew-function.

Table 3: Peruvian Indian Pulse Data.

Method i se(f) 6 se(6)
Normal 70.051 1.526 9.594 1.108
5 70.193 2.933 9.409 0.918
The row named Normal presents the normal fit of the data whereas the
729 row presents the proposed fit.

5. Concluding Remarks

For finding the MLE of the profile likelihood, an inevitable difficulty is that {,(6)
may not be concave in terms of 8, so a good initial value is important to the convergence
of the algorithm. Following [10], initial values are taken in a reasonable range. If these
initial values result in different 6 or 7(-) then the MLE is chosen such that that the

corresponding likelihood (1) is maximized.

We advocate the use of a smoothing spline to estimate the skew function because
the proposed estimator has two major merits: first, unlike the local likelihood approach
[11], the skew function estimator is twice differentiable everywhere and, second, unlike
the B-spline approach [6], there is no additional consideration in choosing interior knots.
Finally, together with the proposed ACV, the estimates of § and 7m behave no worse

than the one using original CV and our approach reduces computation burden greatly.



SMOOTHING SPLINE ESTIMATION FOR SKEW-SYMMETRIC DENSITY
FUNCTIONS 37

Appendix A. Proof of Theorem 1

The proof of Theorem 1 is almost identical to Theorem 10.6 in [16] but with dif-
ferent arguments in Hellinger metric. Before moving forward, we define useful subsets:
Gm(M)={g:9 € Wy, I,(g9) < M} for some 1 < M < 00; Gno(M) = G (M) N W03
and GI' (o, M) = {w(g) : g € Gmo(M)} for some function . These subsets will be
adopted in various situations below in order to show convergence. Besides, analogous

to Lemma 10.5 of [16], we have basic inequality
R(0(0).(5") + PIEG) <16 [ por(@)d(P, — P)+ 1L (")

where o v(g) = p(u(g)), p(w) = 0.5logl(w + w*)/2w”], v(g) = —g + log(1 + ¢) and
logm = v(g). The function p is well defined since v(w) > 0 Vw € R.

Equipping with above basic inequality, the proof of convergence is done by showing
that the regularity conditions in Theorem 10.6 of van de Geer (2000) hold. These
conditions are: 1) for any M > 1 and g € G1 = GE(pov,M) = {pov(g) : g €
Wino, Im(9) + Im(g0) < M}, and [[g — gol| < h(g,90); 2) supgeq, Mg, 90) < coM, for
some ¢y > 0; 3) Hp(6,G1,P) < A (%)Um, for all 6 > 0; and 4) supgeq, [9 — goloo <
coM . Here, Hp(+) denotes the bracketing entropy of the corresponding class of function
under square-norm metric. Condition 1 and 2 are inherited by Hellinger metric so we
omit them. Condition 3 has been shown in Lemma 1 below together with the fact
that G has finite entropy [16]. Finally, condition 4 is satisfied because both v and p
are Lipschitz and monotone decreasing which can be proved by taking derivatives, see

Lemma 2.

Lemma 1. Let ¢ be Lipschitz and monotone. For any 6 > 0 and m € N, we have

1

M\ m™
Haler0. G50, M), P) < Hp(0.G,(00).P) < 4 ()

for some positive constant cy.

Proof. The second inequality is proven by [16]. Therefore, we only show the first one.

By the definition of bracketing, for all g € G,,, there exists a pair {gr, gv} such that
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91, < g < gu and ||gu — gr|| < I, § > 0. The smallest number of such pairs is associated
with the entropy. Let ¢(+) be a continuous monotone and Lipschitz function. Due to the
monotonicity and Lipschitz property, ¢(g91,) < ¢(g9) < ¢(gy) for monotone increasing
and ¢(gv) < ¢(g) < ¢(gr) for monotone decreasing. Consequently, ||o(gr) —¢(gr)|| <

cillgu = gl < e1d. O

Lemma 2. Forany g € Gno(M), we have 1) v(g) is Lipschitz and monotone decreasing

in g; and 2) pov(g) is Lipschitz and monotone decreasing in g.

Proof. With the fact that if the first derivative of a function is bounded then this

function is Lipschitz, two results can be shown by simply taking derivative. For any

g1, g2 € ng(M))

1. Since —1 < d%y(g) =—-1+ 1feg < 0, by mean value theorem, we have |v(g1) —
v(ge)| = |%y(g)|g:gm|gl — go| where g, is an intermediate value between g; and

g2. Therefore, [v(g1) — v(g2)| < c1]g1 — g2| with ¢; = 1.

2. Again,
d 1 1 1

0< Ep(y)zil/—i—y* < 2u*

=y

where v = v(g) and v* = v(g*). This implies

lpov(gr) —pov(ge)l < calv(gr) —v(g2)| < cacilgr — gal,

i.e. pov(g) is Lipschitz. Furthermore, since %1/ < 0 and d%p > 0 we conclude

that p ov(g) is monotone decreasing in g.

Appendix B: Proof of Theorem 2

Proof. In order to preventing ambiguity, denote the minimizer of (2) with tuning pa-

rameter A by g&” and the minimizer of of (4) with A by ﬁ§\2) and hence, g&z). Let

n = no + ng where n € Wy, no € Wio and ng € W,,g. Given 1, no and ng are
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unique. Thus,

. 1T zi)—n(—zi
#®) = arg min lz{—mm)—n(—xm /2 +1og (1 -+ elrte =l 2)}“%”)]
neWm | M i2]

— arg min [1 z”: {_7]0(-731') + log (1 + 6"0(9”)) } + N {12 (no) + Ifn(nE)}]

N0 EWmo ng€Wme | i=1
1 n
= argmin | — Z {—770(3%) + log(1 + e"o(xi))} + A2I2 (no) | + argmin A2 I2, (ng)
no€Wmo n i=1 NEWmE
_A® (2)
= o T Mk

where 77(E2))\ can be arbitrary function in W, such that Im(ng&) = 0. The first min-

imization of the last second equation is exactly problem (4) but replacing g by no,

ie. 'ﬁg’))\ = g&l). Besides, since g(f) = ﬁ/(\Q)(x) - ﬁf\m(—:r)} /2 = ﬁg))\ we conclude
(1) A2
i =g 0

Appendix C: Smoothing Spline Estimation

In [8], the polynomial smoothing spline corresponds to a reproducing kernel R
which can be orthogonally partitioned as R = Ry + Rj. One particular kernel for W is
Ro(z,y) = 1+ ki(2)k1(y) and Ri(z,y) = ka(2)k2(y) — ka(|z —y|) where k1(z) = 2—0.5,
ko(2) = k3(2)/2 — 1/24 and ky(2) = (k#(2) — k}(2)/2 + 7/240)/24. By representation
theory, n(z) = di+daz+37_; ¢;Ri(x;, ) for some unknown constant ¢ = (ci, - - - )t
and d = (d1,d2)T. Recall that g(x) = [n(x) —n(—2)]/2 and hence, d; can be arbitrary.
We set di = 0. Write Qc + Sd where the (7, j)th element of Q are Q;; = Qg,(x;) =
Ri(z, ;) and S;; = S, (z;) = z;. Consequently, solving (4) is equivalent to find the

solution of 7 = (c¢',d)™. Thus, we have

1 1<
pl(g) = - Z WZ-TT + - Z log(1 4+ exp{WiTT}) +22¢'Qe (5)
i=1 i=1
where Wi; = [Qu,, Sz,](25) — [Qu,, Sz, ](—2;) and W represents the ith row of matrix

W. The gradient and Hessian of (5) are

1 1
“WT(p, —1,)+2X2Q'7 and —WTV,W +2)2Q/,
n n
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respectively, where we define

0T 0 -

Q- Q 0 ' GXP{W;FT}
B S exp{WiTT}’

V; as a diagonal matrix with diagonal elements V. ; = p;;(1 —p-;), i = 1,...,n and
1, as a 1-vector with length n. Applying Newton-Raphson algorithm, the updating

formula is
1 1
T =1 — {WTVTW + 2/\2Q’] {WT(pT —1,) +2X°Q'7
n n

“—"

where represents the generalized inverse.

Note that the aforementioned reproducing kernel is defined on [0, 1] whereas our
problem is on S = [—0.5,0.5]. This does not fail the result because both ka(-) and k4(+)
are functions of ki(x) = x — 0.5. So, in practice, we can scale the data into [0, 1] and
use the regular polynomial kernel or scale the data into [—0.5,0.5] and use the modified

kernel with kq(z) = .

Appendix D: Derivation of the Approximate Cross Vali-

dation

The ACV is derived by a second order Taylor expansion. Denote g as the true

underlying function and g as the estimate using (5). By expanding ¢ at g, we have

1 e9/2 1 r

g—log(1+¢’) ~ K(g9) — 5 [(9—9)

2 1+ed  edl?

where K(g) = g—log(1+e9)+e79/2. Notice that g is a known function and hence the
first summand is a fixed value, say gq. Thus, the leave-one-out version of the approximate

log-likelihood has the form

1 )
Aplyy = g+ ———— ST AT — 27T A7 — 27 WAL 2, Ty
plm q[l]+2(n—1) {T T T iT T p2—|—q2}—|—/\7- Q'r
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where A; = WTITHW, T' = A2 A is a diagonal matrix with (i,7) element e9(#)/2 /(1 4
eg(xi)); po is a vector with it element e~ 9(=)/2; for matrix B, B%} = By, Vj # 1, and
BE? = 0; and ¢» is another function which involves no 7. Consequently the minimizer
of Aply is

i = [Ai +2%(n - 1)Q]~ [Aﬁ- n WTA[i]pQ} .
Let gﬁ} = W, i=1,2,...,n and the approximation of ﬁcv is

RKLacy = —% i {gﬁ] (z;) — log (1 + el W)} .
=1

The smoothing parameter A is chosen so that RKL Acy is minimized.
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