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ABSTRACT

Checking compatibility of the specified conditional distributions is an important

problem in statistics, especially in Bayesian computations. However, conditional den-

sity may be given without exact normalizing constant multiplier since this multiplier is

hard to identify. In this article, we provide necessary and sufficient conditions for com-

patibility of non-normalized conditional densities. In addition, if they are compatible,

we also discuss the uniqueness of the associated joint density which generates them.
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1. Introduction

The members of a collection of conditional densities are called compatible if there

exists a joint density which generates them. For example, suppose that we are given

two conditional densities, say πX|Y (x|y) and πY |X(y|x), satisfy πX|Y (x|y) > 0 for all

x ∈ Sy
X and for each y ∈ SY , πY |X(y|x) > 0 for all y ∈ Sx

Y and for each x ∈ SX , and

∫

S
y

X

πX|Y (x|y) dx = 1,

∫

Sx
Y

πY |X(y|x) dy = 1.

Here,
⋃

y∈SY
Sy

X =
⋃

x∈SX
Sx

Y and we denote it by SXY . We say that πX|Y and πY |X
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are compatible if there exists a joint density πXY (x, y) with support SXY such that

πX|Y (x|y) =
πXY (x, y)

∫

S
y
X

πXY (t, y) dt
for all x ∈ Sy

X and for each y ∈ SY ,

and

πY |X(y|x) =
πXY (x, y)

∫

Sx
Y

πXY (x, t) dt
for all y ∈ Sx

Y and for each x ∈ SX .

It is well-known that two marginal distributions cannot uniquely determine the

joint distribution. However, in specifying multivariate models it is sometimes easier

to visualize conditional distributions rather than marginal or joint distributions. For

example, a physician would have no difficulty in citing the risk of stoke conditioned

on combinations of risk factors such as smoking, obesity, diabetics etc (Ip and Wang,

2009). Applications may be founded in the area of model building in classical statistical

settings and in the elicitation and construction of multi-parameter prior distributions

in Bayesian scenarios. In addition, spatial model (Besag, 1974), construction of mul-

tivariate distributions (Sarabia and Gómez-Déniz, 2008), multiple imputation (Van

Buuren et al., 2006; Van Buuren, 2007), and Gibbs sampling with improper posteriors

(Hobert and Casella, 1998), are another important areas involving conditionally spec-

ified distributions. Unfortunately, there is no guarantee that all conditional models

are compatible. Each conditional distribution only contains partial information about

the target (joint) distribution. Combining these conditional distributions, one may

derive possible conflicting information about the target distribution. Therefore, the

compatibility issue is a basic framework for topics related to conditionally specified

distributions.

Three common issues of compatibility are (1) whether the given conditional den-

sities are compatible; (2) if they are, whether or not the associated joint density is

unique; and (3) how to determine all possible joint densities efficiently. These issues

have been of fundamental importance in Bayesian computations and in distribution

theory, and have been studied extensively in the literature. Some earlier results can

be seen in Besag (1974), Arnold and Press (1989), Gupta and Varga (1990), Casella

and George (1992), Gelman and Speed (1993, 1999), Ng (1997), Hobert and Casella

(1998), Arnold et al. (1999, 2001, 2002, 2004), Pérez-Villalta (2000), Kopciuszewski
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(2004), and Slavkovic and Sullivant (2006). Recently, Wang and Ip (2008) and Ip and

Wang (2009) investigated the log-linear interactions to study conditional modelling on

a product measurable space (Tian and Tan, 2003). Song et al. (2009) and Tian et al.

(2009) gave different methods, respectively, for checking the existence and uniqueness

of the joint distribution which is connected with the given finite discrete conditional

distributions. Most of related works on conditional models in the literature have fo-

cused on conditional density which is given with exact normalizing constant multiplier.

However, in practice, the constant multiplier is typically unavailable in closed form and

we always take the conditional density to be proportional to a nonnegative function.

In this article, we consider non-normalized conditional models and provide methods,

respectively, for checking compatibility and uniqueness.

The article is structured as follows. In Section 2, we discuss necessary and sufficient

conditions for existence and uniqueness of the two-dimensional joint distribution. Ex-

amples are given for illustrating the theory. In Section 3, we provide higher-dimensional

results which are analogous to those presented in Section 2. Conclusions are given in

Section 4.

2. Two-dimensional cases

Suppose that we are given the following conditional model:

{

πX|Y (x|y) ∝ g1(x, y), x ∈ Sy
X , y ∈ SY ,

πY |X(y|x) ∝ g2(x, y), y ∈ Sx
Y , x ∈ SX ,

where
∫

S
y

X
g1(x, y) dx 6= 0 for all y ∈ SY and

∫

Sx
Y

g2(x, y) dy 6= 0 for all x ∈ SX . We

say g1 and g2 are compatible if there exist a joint density πXY (x, y), and two functions

c1(y) and c2(x) such that

c1(y)g1(x, y) =
πXY (x, y)

∫

S
y
X

πXY (x, y) dx
and c2(x)g2(x, y) =

πXY (x, y)
∫

Sx
Y

πXY (x, y) dy
.

In the following, we provide a method for checking compatibility of g1 and g2.

Theorem 1. The specified g1 and g2 are compatible if and only if there exist two
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functions u(x) and v(y) such that

g1(x, y)

g2(x, y)
=

u(x)

v(y)
, for all (x, y) ∈ SXY ,

where
∫ ∫

SXY

v(y)g1(x, y) dx dy < ∞.

Proof. Suppose that g1 and g2 are compatible and πXY is an associated joint den-

sity. Then there exist c1(y) and c2(x) such that c1(y)g1(x, y) = πXY (x, y)/πY (y) and

c2(x)g2(x, y) = πXY (x, y)/πX(x) where πX and πY are marginal densities of πXY . Then

the necessary conditions of the theorem hold.

Conversely, define a joint density as

hXY (x, y) =
v(y)g1(x, y)

∫ ∫

SXY

v(y)g1(x, y) dx dy
, (x, y) ∈ SXY .

Then the corresponding conditional densities are

hX|Y (x|y) =
v(y)g1(x, y)

∫

S
y

X
v(y)g1(x, y) dx

∝ g1(x, y),

and

hY |X(y|x) =
v(y)g1(x, y)

∫

Sx
Y

v(y)g1(x, y) dy
=

u(x)g2(x, y)
∫

Sx
Y

u(x)g2(x, y) dy
∝ g2(x, y).

Therefore, g1 and g2 are compatible.

Under the assumptions of Theorem 1 and suppose that g1 and g2 are compatible,

then an associated joint density can be formulated by

v(y)g1(x, y)







∫ ∫

SXY

v(y)g1(x, y) dx dy







−1

.

On the other hand, when g1 and g2 are conditional densities, then Theorem 1 is con-

sistent with that given by Arnold and Press (1989, Theorem 4.1).

Example 1. (An incompatible case) Suppose that

πX|Y (x|y) ∝ e−xy, x > 0, and πY |X(y|x) ∝ e−xy, y > 0.

Here g1(x, y) = g2(x, y) = e−xy and we have g1(x, y)/g2(x, y) = 1. Let u(x) = c and

v(y) = c where c 6= 0. However, v(y)g1(x, y) is not integrable over (0,∞) × (0,∞). So,

there is no proper joint density with this conditional model.
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The next example is given by Kopciuszewski (2004) and we resolved it by using our

method.

Example 2. (A compatible case) Suppose that πX|Y (x|y) is proportional to the

exponential density on the interval [y − 1, y], and πY |X is proportional to the normal

density, with mean −x + 1/2 and variance 1, on the interval [x, x + 1]. That is,

πX|Y (x|y) ∝ g1(x, y) = e−xy, πY |X(y|x) ∝ g2(x, y) = exp

(

−(y + x − 1/2)2

2

)

and SXY = {(x, y) | 0 ≤ y − x ≤ 1, x ≥ 0}. Notice that

g1(x, y)

g2(x, y)
= exp

(

x2 + y2 − x − y + 1/4

2

)

.

Set v(y) = exp(−y2/2 + y/2). Since v(y)g1(x, y) is integrable over SXY , we conclude

that the conditional model is compatible.

Once we have determined that the specified conditional model is compatible we need

to address the issue of whether there is a unique associated joint density. Let V be the

collection of all v(y)’s in the ratio g1(x, y)/g2(x, y) = u(x)/v(y) derived in Theorem 1.

We shall, however, consider v1(y) and v2(y) to be equivalent if v1(y) = cv2(y) almost

everywhere for a certain c 6= 0. Hence, for all v1(y), v2(y) ∈ V , we have v1(y) 6= cv2(y)

almost everywhere for all c 6= 0. Let F consist of all possible joint densities which

generate g1 and g2. In the following theorem, we show that V and F have the same

cardinal number.

Theorem 2. Suppose that g1 and g2 are compatible. Define a mapping H : V → F by

H(v(y)) = v(y)g1(x, y)







∫ ∫

SXY

v(y)g1(x, y) dx dy







−1

.

Then H is bijective.

Proof. Notice that H is well-defined. Suppose that πXY ∈ F , then there exist func-

tions c1(y) and c2(x) such that c1(y)g1(x, y) = πXY (x, y)/πY (y) and c2(x)g2(x, y) =

πXY (x, y)/πX(x). Obviously, v(y) ≡ c1(y)πY (y) ∈ V and then H is surjective.

Assume that H(v1(y)) = H(v2(y)). This implies that v1(y) = cv2(y) almost every-

where. Therefore, v1 and v2 are equivalent and H is then injective.
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From Theorem 2, we see that the associated joint density is not unique if there exist

non-equivalent v1 and v2 such that g1(x, y)/g2(x, y) = u1(x)/v1(y) = u2(x)/v2(y). In

addition, all possible joint densities can be constructed by knowing all v(y)’s.

Example 3. (A non-unique case) Define the sets A1 = {(x, y) | −1 < x, y < 0} and

A2 = {(x, y) | 0 < x, y < 1} and set g1(x, y) = g2(x, y) = 1 for (x, y) ∈ A = A1 ∪ A2.

Clearly, g1 and g2 are compatible. Let

vλ(y) =

{

λ1, y ∈ (−1, 0),

λ2, y ∈ (0, 1),

where λ = (λ1, λ2) is any positive vector. Therefore, all possible joint densities can be

presented by

vλ(y)g1(x, y)





∫ ∫

A

vλ(y)g1(x, y) dx dy





−1

=
λ1

λ1 + λ2
I((x, y) ∈ A1) +

λ2

λ1 + λ2
I((x, y) ∈ A2).

3. Extension to higher dimensions

Results analogous to those presented in the previous section can be given in higher-

dimensional settings. Suppose that Xi, 1 ≤ i ≤ I, are random variables with support

Si, respectively. Let N = {1, . . . , I}, α 6= N be a nonempty subset of N , and α = N−α.

We write the joint density by πN (xN ) on SN , the α-marginal density by πα(xα) on Sα,

and the conditional density by letting πα|α(xα|xα) = πN (xN )/πα(xα) on Sxα
α . Now,

we consider the following conditional model:

παj |αj
(xαj

|xαj
) ∝ gj(xN ), 1 ≤ j ≤ m.

Theorem 3. The gj , 1 ≤ j ≤ m, are compatible if and only if there exist v(xα1
) and

uj(xαj
) for 2 ≤ j ≤ m such that

g1(xN )

gj(xN )
=

uj(xαj
)

v(xα1
)

, for all xN ∈ SN ,
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where
∫

SN
v(xα1

)g1(xN ) dxN < ∞. If gj ’s are compatible, then the associated joint

density is not unique if and only if there exist two non-equivalent v(1)(xα1
) and v(2)(xα1

)

such that

g1(xN )

gj(xN )
=

u
(1)
j (xαj

)

v(1)(xα1
)

=
u

(2)
j (xαj

)

v(2)(xα1
)

for some 2 ≤ j ≤ m.

4. Conclusions

The compatibility and uniqueness problems affect the using of the Gibbs sampler

and some Markov Chain Monte Carlo methods. In this article, we provide methods for

addressing these problems and these methods are very easy to practice. Gelman and

Raghunathan (2001) stated that “the study of conditional distributions is an area where

theory has not caught up with practice.” Our theoretical work here might contribute

to some of the compatibility issues.
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24, 425–448.



112 KUN-LIN KUO
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